scispace - formally typeset
Search or ask a question
JournalISSN: 0018-9375

IEEE Transactions on Electromagnetic Compatibility 

Institute of Electrical and Electronics Engineers
About: IEEE Transactions on Electromagnetic Compatibility is an academic journal published by Institute of Electrical and Electronics Engineers. The journal publishes majorly in the area(s): Electromagnetic compatibility & Electromagnetic shielding. It has an ISSN identifier of 0018-9375. Over the lifetime, 5436 publications have been published receiving 125239 citations. The journal is also known as: Transactions on electromagnetic compatibility & Electromagnetic compatibility.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, highly absorbing boundary conditions for two-dimensional time-domain electromagnetic field equations are presented for both two-and three-dimensional configurations and numerical results are given that clearly exhibit the accuracy and limits of applicability of these boundary conditions.
Abstract: When time-domain electromagnetic-field equations are solved using finite-difference techniques in unbounded space, there must be a method limiting the domain in which the field is computed. This is achieved by truncating the mesh and using absorbing boundary conditions at its artificial boundaries to simulate the unbounded surroundings. This paper presents highly absorbing boundary conditions for electromagnetic-field equations that can be used for both two-and three-dimensional configurations. Numerical results are given that clearly exhibit the accuracy and limits of applicability of highly absorbing boundary conditions. A simplified, but equally accurate, absorbing condition is derived for two- dimensional time-domain electromagnetic-field problems.

2,553 citations

Journal ArticleDOI
TL;DR: A statistical model of the time behavior of random impulsive noise based on a partitioned Markov chain is developed, which is suitable for implementation in computer-based communication system simulations.
Abstract: Contrary to many other communication channels, the powerline channel does not represent an additive white Gaussian noise environment. In the frequency range from several hundred kilohertz up to 20 MHz, it is mostly dominated by narrow-band interference and impulsive noise. In particular, the impulsive noise introduces significant time variance into the powerline channel. Spectral analysis and time-domain analysis of impulsive noise give some figures of the power spectral density as well as distributions of amplitude, impulse width, and "interarrival" times in typical powerline scenarios. Furthermore, the impulse rate and the disturbance ratio of the scenarios are examined. Finally, a statistical model of the time behavior of random impulsive noise based on a partitioned Markov chain is developed, which is suitable for implementation in computer-based communication system simulations.

965 citations

Journal ArticleDOI
TL;DR: In this paper, the time-domain transmission-line equations for uniform multiconductor transmission lines in a conductive, homogeneous medium excited by a transient, nonuniform electromagnetic (EM) field are derived from Maxwell's equations.
Abstract: The time-domain transmission-line equations for uniform multiconductor transmission lines in a conductive, homogeneous medium excited by a transient, nonuniform electromagnetic (EM) field, are derived from Maxwell's equations. Depending on how the line voltage is defined, two formulations are possible. One of these formulations is considerably more convenient to apply than the other. The assumptions made in the derivation of the transmission-line equations and the boundary conditions at the terminations are discussed. For numerical calculations, the transmission -line equations are represented by finite-difference techniques, and numerical examples are included.

893 citations

Journal ArticleDOI
TL;DR: In this paper, the traditional finite difference time domain (FDTD) formulation is extended to include a discrete time-domain convolution, which is efficiently evaluated using recursion, and the accuracy of the extension is demonstrated by computing the reflection coefficient at an air-water interface over a wide frequency band including the effects of the frequency-dependent permittivity of water.
Abstract: The traditional finite-difference time-domain (FDTD) formulation is extended to include a discrete time-domain convolution, which is efficiently evaluated using recursion. The accuracy of the extension is demonstrated by computing the reflection coefficient at an air-water interface over a wide frequency band including the effects of the frequency-dependent permittivity of water. Extension to frequency-dependent permeability and to three dimensions is straightforward. The frequency dependent FDTD formulation allows computation of electromagnetic interaction with virtually any material and geometry (subject only to computer resource limitations) with pulse excitation. Materials that are highly dispersive, such as snow, ice, plasma, and radar-absorbing material, can be considered efficiently by using this formulation. >

687 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed analytically tractable, experimentally verifiable, statistical-physical models of electromagnetic interference, which are invariant to the particular noise source and its quantifying parameter values, levels, etc.
Abstract: Most man-made and natural electromagnetic interference, or "noise," are highly non-Gaussian random processes, whose degrading effects on system performance can be severe, particularly on most conventional systems, which are designed for optimal or near optimal performance against normal noise. In addition, the nature, origins, measurement, and prediction of the general EM interference environment are a major concern of any adequate spectral management program. Accordingly, this study is devoted to the development of analytically tractable, experimentally verifiable, statistical-physical models of such electromagnetic interference. Here, classification into three major types of noise is made: Class A (narrow band vis-a-vis the receiver), Class B (broad band vis-a-vis the receiver), and Class C (= Class A + Class B). First-order statistical models are constructed for the Class A and Class B cases. In particular, the APD (a posteriori probability distribution) or exceedance probability, PD, vis;P1 (? > ?o)A,B, (and the associated probability densities, pdf's w1(?)A,B,[1]) of the envelope are obtained; (the phase is shown to be uniformly distributed in (0, 2?). These results are canonical, i.e., their analytic forms are invariant of the particular noise source and its quantifying parameter values, levels, etc. Class A interference is described by a 3-parameter model, Class B noise by a 6-parameter model.

683 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2023193
2022355
2021205
2020313
2019241
2018274