scispace - formally typeset
Search or ask a question

Showing papers in "International Journal of Chemical Engineering in 2022"


Journal ArticleDOI
TL;DR: In this article , the impact of fiber composition, sequence, and stacking pattern on composite mechanical Features was investigated and the upshot observed in the brook of hybrid composites especially, the current investigation focuses on the impact on the composite mechanical features.
Abstract: This article investigates and presents the upshots observed in the brook of hybrid composites especially, the current investigation focuses on the impact of fiber composition, sequence, and stacking pattern on composite mechanical Features. Five varied stacking sequences of hybrid composites encompassing laminates are used to create four classes of fiber with jute/bamboo/glass by utilizing a conscientious hand lay-up process with glass fiber-laced mats as their peripheral layer. For examination, fiber sequences are arranged in the combination of GJBJG, GBJBG, GJGJG, and GBGBG, where G, J, and B refer to glass fiber, jute fiber, and bamboo fiber, respectively. The position of fiber in the core layer is kept in a perpendicular direction with respect to adjacent piles which might be jute or bamboo fiber and the best position of fiber is considered due to the stacking order. Stress and strain were linear in the load versus deflection curves, and all of the samples failed quickly, it is observed that the sample containing a higher or considerable number of bamboo fiber layers exhibited increased strain and toughness. In comparison to other samples, embolism of glass fiber as the main and covering layer expressed a higher impact on the mechanical properties of the composites is observed in this investigation. The shattered sample morphology demonstrated that the matrix and reinforcements were compatible.

34 citations


Journal ArticleDOI
TL;DR: In this article , a novel NF extricated from the Caribbean royal palm (CRP) along with its features is determined to replace the harmful synthetic fibres effectively, which can be used as possible reinforcement in the polymer matrix.
Abstract: Synthetic fibres (SF) are replaced by natural fibres (NF) and are utilized as polymer reinforcement owing to their eco-friendliness. The composite has been introduced in the current development by employing NF as reinforcement and stuffing in the polymer matrix (PM). The advantages of using natural resources are being eco-friendly, having plentiful natural availability, higher strength, lower cost, and a simple extrication process. When heated to a specific temperature, certain synthetic products create noxious materials. Therefore, replacing these synthetic substances with natural substances has greater advantages for the environment. In this study, a novel NF extricated from the Caribbean royal palm (CRP) along with its features is determined to replace the harmful SF effectively. The CRP’s leaf stalks, termed CRP leaf stalk fibres (CRPLSFs), are extricated and categorized by (i) thermogravimetric analysis (TGA), (ii) scanning electron microscopy (SEM), (iii) Fourier-transform infrared (FT-IR) spectroscopy, (iv) physical-chemical analysis, (v) X-ray diffraction (XRD), and (vi) tensile test (TT). The physical-chemical characteristics of CRPLSFs, cellulose content (CC), tensile strength (TS), density, and hemicelluloses correlate with other NF characteristics. The CRPLSFs’ chemical components include hemicelluloses (14.52%), lignin (9.15%), and cellulose (61.67%). The TGA shows that the CRPLSFs are thermally stabilized up to 326°C. The XRD proved that the CRPLSFs are enriched with a cellulose fraction comprising a crystallinity index (CI) of 30.27%. The outcomes recommended that the biodegradable coconut peduncle leaf stalk fibres (CPLSF) could be exploited as possible reinforcement in the PM composite structure and can be engaged in making composites.

18 citations


Journal ArticleDOI
TL;DR: In this article , the structural properties of natural fiber-based polymer nanocomposites have been examined using the Taguchi L9 design, such as flexural, tensile, and impact properties.
Abstract: Natural fibre-based polymer nanocomposites have played an essential role in many industry domains for four to five years because of their strong mechanical and physical qualities. The primary goal of this research is to establish the mechanical and morphological properties of nanocomposite materials in natural environments. Flax fibre was employed as a reinforcement, nanographene powder was used as a filler, and epoxy resin was used as a matrix material to achieve the goals above, keeping the following restrictions in mind: (i) fibre length (15, 30 and 45 mm), (ii) fibre content (10, 15 and 20 mm), and (iii) wt.% of nanofiller (2.5, 5 and 7.5 wt.%). The composite materials were laminated using the compression moulding process per the Taguchi L9 design. The mechanical characteristics of the material, such as flexural, tensile, and impact properties, were examined according to ASTM standards. The mechanical characteristics of combinations A2, B2, and C2 are the best when compared to other combinations. The graphene-based nanocomposites revealed that 2.5 wt.% graphene contributes 33.08% of mechanical properties, the 5 wt.% graphene contributes 36.4%, and the 7.5 wt.% graphene contributes 30.53%. Including 5 wt.% graphene content provides the highest mean values of mechanical strength like 36.59 MPa tensile, 40.25 MPa flexural, and 31.68 kg/m2 of impact. Scanning electron microscopy (SEM) images of the cracked specimens were used better to understand the failure process of composites during mechanical testing.

13 citations


Journal ArticleDOI
TL;DR: Grewia optiva wheat straw waste fiber and PAN fiber are combined in this paper to create new composite materials, and the results showed that PAN fiber is quite effective as composites.
Abstract: Grewia optiva wheat straw waste fibre and PAN fibre are combined in this study to create new composite materials. The novel specimens were created in the hydraulic hind moulding machine with varying percentages of mass of wheat straw fibres, PAN fibre (2–8%) in an equivalent ratio with other materials, and Kevlar fibre-based composites (2–4%). Natural fibre-reinforced clothing is getting increasingly fashionable these days; thus, this research is important. In several papers, natural fibre has been stated to have the potential to replace synthetic fibres. Natural fibre reinforcing has also proven to be quite effective as composites. It is currently used in a range of fields, including medical fields, aerospace, and the automobile industry, among others. Synthetic fibres are used. The usage of synthetic fibres such as asbestos and Kevlar has already been linked to mesothelioma, a kind of lung cancer. Many people have died as a result of Kevlar and asbestos. As a result, an effort to replace these materials is ongoing. Fabricated material’s mechanical, chemical, physical, tribological, and thermal properties were evaluated.

13 citations


Journal ArticleDOI
TL;DR: In this article , the fabrication and characterization of Al7075 semi-solid metal matrix composite (MMC) reinforced with graphene nanoparticles is addressed. But, the analysis is limited to the case of aluminum-7075 at various temperatures of 800, 830, 860, 890, and 920 degrees.
Abstract: Producing items that are of both high quality and long lasting is a difficult task for companies right now. There is a huge need for a wide range of engineering materials in today’s technologically advanced globe. The strength and qualities of the material determine the amount of material that may be used. Due to its excellent mechanical qualities and low density, aluminum-7075 alloy is mostly employed in transportation applications such as aerospace, marine, and vehicle production. This study addresses the fabrication and characterization of Al7075 semisolid metal matrix composite (MMC) reinforced with graphene nanoparticles. Samples are made with and without stirring graphene in aluminum-7075 at various temperatures of 800°, 830°, 860°, 890°, and 920°C. At these temperatures, the material is semisolid, so graphene is introduced and stirred into the molten liquid. The specimens meet the requirements of the American Society for Testing and Material (ASTM). The hardness, tensile strength, impact strength, and compression strength of various materials are evaluated and compared. Temperature lowers tensile strength, hardness, and compression. A scanning electron microscope (SEM) is used to examine the microstructure. The specimen is evaluated using ANSYS. Specimens with stirring have better mechanical characteristics. Graphene has high hardness and strength.

11 citations


Journal ArticleDOI
TL;DR: In this paper, a cyclic ring reactor was used for the treatment of simulated dye solutions of permanent methylene blue dye by an aluminum rod and a stainless steel mesh were used as the anode and cathode.
Abstract: The progress in textile industrial technologies comes along with a massive increase in the discharge of dyes in the wastewater which considers a serious environmental problem. In this regard, a new electrochemical system has been developed for the treatment of simulated dye solutions of permanent methylene blue dye by an electrochemical cyclic ring reactor. An aluminum rod and a stainless steel mesh were used as the anode and cathode. The experiments on the artificial dye solutions have been carried out in a 6-liter electrochemical cell containing 50 ppm neutral dye solutions. The effects of various parameters such as electrolysis time applied current density (2, 3.32, 5.31, 6.64, and 7.46 mA cm−2), electrolyte concentrations (600, 900, 1200, 1500, and 1800 ppm), and flow rates (1, 1.5, 2, 2.5, and 3 Lh−1) on the process removal efficiency were examined. The results demonstrated that the removal efficiency reached 94–99% within 40–50 minutes of electrolysis time. The removal efficiency increased by increasing the flow rates until it reaches a maximum value at a flow rate of 2 Lh−1; thereafter, it declined with the farther augment of recirculation speed. It is indicated that raising the applied current resulted in increasing the removal efficiency. However, the power consumption builds up to the maximum value by increasing the applied current, where the power consumption rose from 8.51 to 30.3 kWh kg−1 with an increase in the current density from 2 to 7.46 mA cm−2, and a removal efficiency increased from 94% to 99%, accordingly. The results also showed that by increasing the electrolyte concentration, the power consumption can be reduced to its minimum value and the removal efficiency increased remarkably.

9 citations


Journal ArticleDOI
TL;DR: In this paper , the authors examined the combined effects of DMC and EGR on the CRDI small single-cylinder diesel engine's performance, combustion, and emissions, and the outcome clearly demonstrates that both the 5 ml DMC additive and the 20% EGR rate of the B20 blend show optimum values of BTE, BSFC, and EGT of 32.93%, 0.27,kg/kw·hr, and 310.89°C, which is significantly higher than diesel fuel.
Abstract: This paper examines the combined effects of ignition improvers (DMC) and EGR on the CRDI small single-cylinder diesel engine’s performance, combustion, and emissions. In this experimentation, 20% (B20) optimal mix of Prosopis juliflora oil biodiesel (PJOB) and 5 ml dimethyl carbonate (DMC) additive was used as test fuel. The fuel handling CRDI system factors such as injection pressure set at 600 bar and injection timing set to 21 (bTDC) with a compression ratio of 16 were considered for the study. For the EGR trial, 20% of the exhaust gas was recirculated under various BMEP circumstances. The test was performed with and without EGR and DMC additive conditions like (i) diesel @ 0% EGR, (ii) diesel + 5 ml DMC @ 20% EGR, (iii) B20 @ 0% EGR, and (iv) B20 + 5 ml DMC @ 20% EGR at the engine power output. The amalgamation of dimethyl carbonate (DMC) additives and EGR reduces NOx and smoke while increasing CO and HC emissions. In addition, the DMC additive and EGR improve thermal efficiency slightly. The overall clubbing of DMC additive and EGR rate indicates better performance for the selected factors than a CRDI engine with a six-hole conventional mechanical fuel injection system. The outcome of the work clearly demonstrates that both the 5 ml DMC additive and the 20% EGR rate of the B20 blend show optimum values of BTE, BSFC, and EGT of 32.93%, 0.27 kg/kw·hr, and 310.89°C, which is closer to diesel. Factors of combustion like cylinder peak pressure (CPP) and heat release rate (HRR) are 70.93 bar and 58.13 J/deg. The tailpipe exhaust of NOx and smoke is 1681 ppm and 31.30 (% vol), which is less than diesel. The HC and CO levels are 93 ppm and 0.38 (% vol), respectively, which are significantly higher than diesel fuel.

8 citations


Journal ArticleDOI
TL;DR: In this article , the potential use of coconut dregs as the new biosorbent for the removal of Methylene Blue (MB) and Brilliant Red Remazol (BRR) was investigated.
Abstract: Water pollution has become a major issue in many countries, including Malaysia. Malaysia is one of the countries that suffers from this detrimental influence on water resource sustainability. Adsorption has been discovered to be a cost-effective and efficient method of removing contaminants such as pigments, dyes, and metal impurities. Many biomass-based adsorbent materials have been successfully used for the removal of dyes from aqueous solutions. In this study, the potential use of coconut dregs as the new biosorbent for the removal of Methylene Blue (MB) (basic dye) and Brilliant Red Remazol (BRR) (acidic dye) was investigated. The effects of adsorption time, adsorbent dosage, pH, and initial dye concentration on coconut dregs adsorption for MB and BRR dye were investigated using 2-Level Factorial Design of Design-Expert 7.1.5. The results indicated that the amount of dye adsorbed on the coconut dregs increased with increasing dye concentration, adsorbent dosage, and adsorption time. However, both MB and BRR dyes favor different pH for the adsorption process. The adsorption capacity of MB dye increased with increasing pH, while the adsorption capacity of BRR dye increased with decreasing pH. Removal of MB was optimum at pH 11, contact time of 240 min, a dosage of 0.25 g adsorbent, and an initial dye concentration of 50 mg/L. Meanwhile, for BRR dye, the optimum condition was pH 2, contact time of 180 min, the dosage of 0.25 g adsorbent, and an initial dye concentration of 50 mg/L. The equilibrium data for both dyes fitted very well with the Langmuir Isotherm equation giving a maximum monolayer adsorption capacity as high as 5.7208 mg/g and 3.7636 mg/g for Methylene Blue Dye and Brilliant Red Remazol dye, respectively. This study shows that coconut dregs can be one of the potential and low-cost biosorbents for the treatment of industrial dyes soon.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the authors provided knowledge on the use of bamboo-based adsorbents for the removal of contaminants and pollutants in wastewater in the form of activated carbon, biochar, and aerogel.
Abstract: Water and wastewater treatment are very important for obtaining clean and sanitary water as well as protecting the environment from toxic pollutants. Not only enriched with cellulose and carbon but the abundant resources of bamboo also make it suitable to be utilized as an adsorbent. With the right processing technologies and improvements, the potential of bamboo is unlimited. This study review provides knowledge on the use of bamboo-based adsorbents for the removal of contaminants and pollutants in wastewater in the form of activated carbon, biochar, and aerogel. This review highlighted bamboo utilization and its relevance as an adsorbent for wastewater treatment. The technologies for the processing and improvement of bamboo as well as the performance of the bamboo-based adsorbents are also discussed in this study. The adsorption capacity of bamboo has shown improvement with modification and good adsorption capacity achieved with some of the adsorbent being able to be recycled and reused.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the effects of environmental factors such as contact time, pH, the amount of adsorbent dose, and the initial concentration of metal ions in synthetic solution were investigated to obtain optimal conditions for the adsorption of heavy metal ions.
Abstract: Removal of heavy metal ions such as cadmium, lead, chromium, and iron from industrial wastewater is one of the most critical environmental problems. In this research, natural and low-cost adsorbents like the tangerine peel, bovine gut, tea waste, and sunflower seed hull were used for adsorption of heavy metals, such as chromium and iron, from contaminated solutions. The effects of environmental factors such as contact time, pH, the amount of adsorbent dose, and the initial concentration of metal ions in synthetic solution were investigated to obtain optimal conditions for the adsorption of heavy metal ions. For separation of chromium metal ion from aqueous solution, tea waste, tangerine peel, bovine gut, and sunflower seeds hull showed adsorption capacity of 85%, 51%, 46%, and 34%, respectively, while for the adsorption of iron (III), the adsorption capacities of tea waste, bovine gut, tangerine peel, and sunflower seeds hull were 96%, 96%, and 87%, respectively. The adsorption isotherms were in decent correlation with the Langmuir and Freundlich isotherm models. The adsorption kinetics of iron and chromium has a proper validation with the pseudo-second-order kinetic model. The BET and FTIR analyses were also reported to investigate the adsorption properties. This study suggests these adsorbents as low-cost and economical materials for the adsorption of chromium and iron ions with a high adsorption rate.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the authors used waste animal fat as a feedstock for biodiesel production, using sulfuric acid (H2SO4) and potassium hydroxide (KOH) as catalysts, with methanol as an alcohol.
Abstract: Biodiesel is marketed as a long-term renewable fuel that may partially replace fossil fuels in transportation while also helping to reduce global warming. The current study is focused on using waste animal fat as a feedstock for biodiesel production. Sulfuric acid (H2SO4) and potassium hydroxide (KOH) are used as catalysts, with methanol as an alcohol. Temperature at 60°C, reaction time 2 hrs for acid catalyst, and 55°C, reaction time 90 min for base catalyst with a methanol to oil ratio of 5 : 1 are the experimental and optimized process conditions. With the H2SO4 catalyst, the biodiesel yield was 65.7%, while with the KOH catalyst, it was 48.8%. The ASTM standards are used to compare and study the physicochemical characteristics. This study offers an environmentally friendly solution to a global problem of atmospheric pollution, and at the same time, it shows a commercial alternative to reduce the ecological impact caused by waste animal fat.

Journal ArticleDOI
TL;DR: In this article , the authors focus on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques, and they show that the hybrid process is more effective in removing contaminants in industrial effluent and wastewater than standalone processes.
Abstract: Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.

Journal ArticleDOI
TL;DR: In this article , the authors explored the potential of biofuel derived from the wasteland tree Prosopis juliflora (Karuvalam tree seeds) for a monocylinder 4-stroke water-cooled CRDi CI engine with electrical loading.
Abstract: The exhaustion of worldwide oil reserves has created an incipient need to find hopeful alternative fuels for the future. Substantial research has been done in this direction, and all studies by researchers have provided results that proved the growing potential of biofuel as a popular alternative in the CI engine. The current investigation explores the biofuel potential derived from the wasteland tree Prosopis juliflora (Karuvalam tree seeds). Experimentation was done using a monocylinder 4-stroke water-cooled six holes CRDi CI engine with electrical loading. The experiment was conducted at three proportions (10%, 20%, and 30% volume basis) of Prosopis juliflora Oil Methyl Ester (PJOME) with diesel using 3 parametric CRs (16, 17.5, and 19) along with three different fuel injection pressure (FIP) (400, 500, and 600 bar). The impact of CR and FIP on fuel utilization BTE, cylinder pressure, net heat release, and exhaust particulates was scrutinized and characterized. The test results demonstrated that increasing the compression ratio from 16 to 19 enhanced the in-cylinder pressure, net heat release (NHR), and BTE for all the (PJOME/Diesel) combinations. With an augmentation in the compression ratio from 16 to 19, carbon monoxide and unburnt hydrocarbon discharge diminished, but the nitrogen oxide discharges augmented. FIP also had an impact of increasing the pressures on the in-cylinder, NHR, brake thermal efficiency, and nitrogen oxide and reducing the emissions of smoke, CO, and UBHC. The current research shows that the use of B20 and CR16 and FIP 600 bar as a combination improved BTE by 33.21%, BSFC by 0.25 kg/kw-hr, cylinder pressure at the maximum to reach 69.28 bar, net heat release of 79.14 J/deg, and exhaust emissions such as UHC at 55 ppm, CO at 0.25%, smoke at 34.33%, and NOx at 2401 ppm. Finally, the BTE and NOx were slightly higher, and the UHC, CO, and smoke values were diminutive compared to other blends.

Journal ArticleDOI
TL;DR: In this article , the printing parameters that can be used in the FDM (fusion deposition modeling) production method to obtain the lowest production time and best printing parameter of PLA (polylactic acid) filament with the tensile test were optimized.
Abstract: The main objective of this research study is to optimize the printing parameters that can be used in the FDM (fusion deposition modeling) production method to obtain the lowest production time and best printing parameter of PLA (polylactic acid) filament with the tensile test. The printing parameter that can be used in FDM machines such as extruder temperature, bed temperature, layer height, printing speed, travel speed, infill, and shell count is taken into account for optimization. In addition, the tensile specimens from ASTM (American Society for Testing and Materials) D638 standard were manufactured by PLA filament with the above-modified printing parameters. The best printing parameters for PLA products were found by the time recorded during production and tensile test results after production. Thus, through this research, one can find the best PLA filament printing parameters and their timing.

Journal ArticleDOI
TL;DR: In this paper , the carbon nanofiber and carbon nanotube (CNT) dispersed polyvinylidene fluoride (PVDF) nanocomposite was prepared by chemical synthesis route.
Abstract: Nanostructured carbon dispersed polymer nanocomposites are promising materials for tribological applications. Carbon nanofiber (CNF) and carbon nanotube (CNT) dispersed polyvinylidene fluoride (PVDF) nanocomposite was prepared by chemical synthesis route. Morphology and microstructure of well-dispersed CNF and CNT in PVDF were specified by scanning electron microscope and X-ray diffraction, respectively. Moreover, chemical and functional characteristics were examined by Raman spectroscopy and FTIR investigation. The friction coefficient of PVDF nanocomposite laminated on steel substrate decreased with an increase in the dispersed quantity of CNF and CNT. The friction coefficient of PVDF is approximately 0.27; however, the addition of carbon nanomaterial in PVDF will further decrease the friction coefficient between 0.24 and 0.17. This value was significantly less in CNT dispersed PVDF nanocomposite. This could be explained by easy shearing and rolling action contact interfaces.

Journal ArticleDOI
TL;DR: In this article , a natural fiber such as a banana fiber was investigated to create bioavailable materials while enhancing mechanical properties, and the results showed that 20% by weight of banana fiber gave good results and the mechanical strength values kept at the specified level (tensile strength: 52.57 MPA, flexural strength: 70.35 MPa, impact strength: 155.45 J/m and hardness: 23.8 Hv).
Abstract: Synthetic materials reinforced with natural fibers are attracting great attention of scientists and researchers. Sustainability and eco-friendly nature along with easy availability and low cost are the key reasons. In this work, a natural fiber such as a banana fiber was investigated to create bioavailable materials while enhancing mechanical properties. The banana fiber was extracted from banana sheath by the mechanical method combined with chemical treatment with NaOH 1, 2, 3, 4, and 5%. Treatment of the banana fiber with NaOH effectively removes other impurities from the fiber surface and the fiber surface becomes rough, increasing the compatibility and bonding between banana fiber and PLA. The reported optimum NaOH concentration was 5% banana fiber used for the material polylactic acid (PLA) composite/banana fiber. The composites (BF) were prepared by the hot melt mixing method. The results showed that 20% by weight of banana fiber gave good results and the mechanical strength values kept at the specified level (tensile strength: 52.57 MPa, flexural strength: 70.35 MPa, impact strength: 155.45 J/m and hardness: 23.8 Hv). SEM observations showed visual evidence that surface impurities were removed from the fiber by NaOH treatment.

Journal ArticleDOI
TL;DR: In this paper , a study aimed to optimize the calcination process parameters (viz., temperature, time, and particles size) for the extraction of aluminum from Ethiopian kaolinite.
Abstract: The present study aimed to optimize the calcination process parameters (viz., temperature, time, and particles size) for the extraction of aluminum from Ethiopian kaolinite. The kaolinite calcination was done in the temperature of 600–700°C, time of 120–180 min, and particles size of 106–355 μm. The extraction of aluminum from calcined kaolinite was carried out at fixed acid concentration of 3 M, temperature of 80°C, liquid-to-solid ratio of 12 mL g−1, time of 120 min, and stirring speed of 700 rpm. The chemical composition of kaolinite was determined using XRF. Moreover, kaolinite, metakaolinite, and extracted aluminum were characterized by XRD, TGA, DSC, and FTIR. The XRF result of the kaolinite was mainly silicon oxide (55.76% w/w), aluminum oxide (32.02% w/w), and loss on ignition (11.17% w/w). Calcination of kaolinite produced amorphous metakaolinite due to the dehydroxylation reaction as shown by the FTIR results. Three endothermic peaks and one exothermic peak were detected in the thermal analysis of the kaolinite due to water removal, impurities decomposition, dehydroxylation reaction, and phase change from metakaolinite to spinel, respectively. The extracted aluminum proportionally increased with kaolinite calcination temperature and time. However, the extracted aluminum increased as the particles size reduced. The extracted aluminum was in the form of aluminum chloride hexahydrate and trigonal crystalline structure. The optimum values of the degree of conversion of kaolinite dehydroxylation reaction and extracted aluminum of 0.992 and 71.28% w/w were obtained at the optimum kaolinite calcination temperature of 700°C, time of 180 min, and particles size of 106 μm, respectively.

Journal ArticleDOI
TL;DR: Two machine learning models, including adaptive neurofuzzy inference system and least-squares support vector machine, were used to predict this constant form 98 dataset gathered from earlier reported sources, and the LSSVM model has shown higher accuracy in predicting the target parameter.
Abstract: The main aim of this work is the determination of aromaticity in biochar from easier accessible parameters (e.g., elemental composition). To this end, two machine learning models, including adaptive neurofuzzy inference system (ANFIS) and least-squares support vector machine (LSSVM), were used to predict this constant form 98 dataset gathered from earlier reported sources. The outputs of the statistical parameters showed that the LSSVM model has the ability to estimate the target parameter with R-squared values of 0.986 and a mean relative error of 3.821 for the overall dataset. Also, by analyzing the sensitivity on the input parameters, it was shown that the carbon percentage has the greatest effect on the target values, and a high focus should be placed on this parameter. Finally, by comparing the methods proposed in this paper with other models published in previous studies, our model has shown higher accuracy in predicting the target parameter.

Journal ArticleDOI
TL;DR: In this paper , the authors considered the input source of this system as the volume of garbage in the city of Germi as the study area, and extracted the amount of garbage produced in this city was extracted and the Landfill software was used for methane production potential assessment from this system and the Homer software is used for economic analysis and reliability evaluation.
Abstract: Nowadays, generating energy is discussed as a paramount option in waste management, because the share of energy from waste is increasing annually. The ever-increasing need for energy and limitations of using fossil resources, and also the increase in environmental pollution from consuming these resources have made the use of renewable energies of especial importance. In this research, we first studied renewable energies, followed by technologies related to the biogas system. Biogas systems have been referred to by landfill and discussed comprehensively in this scheme for utilization. For this purpose, the input source of this system is considered as the volume of garbage in the city of Germi as the study area. In the next step, the amount of garbage produced in this city was extracted and the Landfill software was used for methane production potential assessment from this system and the Homer software was used for economic analysis and reliability evaluation. The most important results are payback period, which is about 10 years, and the amount of electricity produced per year, which is 11658.265 MWh.

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the monocomponent adsorption process of Cu(II) ions in synthesized industrial wastewater using activated carbons (BACs) derived from sugarcane bagasse as the precursor.
Abstract: The monocomponent adsorption process of Cu(II) ions in synthesized industrial wastewater were investigated using activated carbons (BACs) derived from sugarcane bagasse as the precursor. Batch adsorption studies were done by treating the precursor with H3PO4 (BAC-P) and ZnCl2 (BAC-Zn) in order to observe the effects of experimental variables such as contact time, pH of the solution, and adsorbent dose. The Langmuir isotherm model excellently described the adsorption data for both the derived BACs, indicating monolayer coverage on the BACs with the determination coefficients close to the value of one. Furthermore, the maximum adsorption capacities of 589 and 225 m g g − 1 at 30°C were obtained for BAC-P and BAC-Zn adsorbents, respectively. The modeling of kinetic data of Cu(II) ions adsorption onto BAC-P and BAC-Zn adsorbents illustrated that the Elovich kinetic model fitted well. Here, the adsorption process was film-diffusion controlling, while being principally governed by external mass transport where the slowest step is the diffusion of the particles through the film layer. The mechanism of the adsorption process was proposed taking into cognizance of the ion exchange and surface complexation on active sites between the negatively charged surface of the BACs and the positively charged Cu(II) ions. The BACs were characterized using analytical methods such as SEM, FTIR, EDX, XRD, BET surface area, and zeta potential measurements. Both BACs mainly composed of mesopores and bonds of O-H, C-O, C=O, and C-O-C. The BET surface area of BAC-P and BAC-Zn was 427.5 and 282 m2/g before adsorption, and their isoelectric point (pHIEP) 3.70 and 5.26, respectively.

Journal ArticleDOI
TL;DR: In this article , Gaussian process regression (GPR) strategies involving four various kernel functions (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) were proposed to predict thermal conductivity (TC) of n-octadecane as a phase change material (PCM).
Abstract: Thermal conductivity (TC) of a phase change material (PCM) may be enhanced by distributing nanostructured materials (NSMs) termed nano-PCM. It is critical to accurately estimate the TC of nano-PCM to assess heat transfer during phase transition processes, namely, solidification and melting. Here, we propose Gaussian process regression (GPR) strategies involving four various kernel functions (KFs) (including exponential (E), squared exponential (SE), rational quadratic (RQ), and matern (M)) to predict TC of n-octadecane as a PCM. The accessible computational techniques indicate the accuracy of our proposed GPR model compared to the previously proposed methods. In this research, the foremost forecasting strategy has been considered as a GPR method. This model consists of the matern KF whose R2 values of training and testing phases are 1 and 1, respectively. In the following, a sensitivity analysis (SA) is used to explore the effectiveness of variables in terms of outputs and shows that the temperature (T) of nanofluid (NF) is the most efficient input parameter. The work describes the physical properties of NFs and the parameters that should be determined to optimize their efficiency.

Journal ArticleDOI
TL;DR: In this paper , the authors highlight the characteristics of food waste and sewage sludge from various global higher education institutions and evaluate the adoption of composting and anaerobic digestion at various campus levels.
Abstract: Composting and anaerobic digestion have emerged as better options for managing food waste and sewage sludge at the campus level. This review highlights the characteristics of food waste and sewage sludge from various global higher education institutions. The composting and anaerobic digestion processes of food waste and sewage sludge will be reviewed and evaluated. Also, the adoption of composting and anaerobic digestion at various campus levels has been reviewed. The challenges and future direction, focusing on managing university campus composting and anaerobic digestion, are discussed as well. This review paper will significantly contribute to the understanding of the potential for managing and handling campus waste in a natural-friendly manner.

Journal ArticleDOI
TL;DR: In this study, the Gaussian process regression approach with four basic function kernels (Matern, squared exponential, exponential, and rational quadratic) was exploited and it was found that Matern outperformed other models with R2 and MARE.
Abstract: This work aims to develop a robust machine learning model for the prediction of the relative viscosity of nanoparticles (NPs) including Al2O3, TiO2, SiO2, CuO, SiC, and Ag based on the most important input parameters affecting them covering the size, concentration, thickness of the interfacial layer, and intensive properties of NPs. In order to develop a comprehensive artificial intelligence model in this study, sixty-nine data samples were collected. To this end, the Gaussian process regression approach with four basic function kernels (Matern, squared exponential, exponential, and rational quadratic) was exploited. It was found that Matern outperformed other models with R2 = 0.987, MARE (%) = 6.048, RMSE = 0.0577, and STD = 0.0574. This precise yet simple model can be a good alternative to the complex thermodynamic, mathematical-analytical models of the past.

Journal ArticleDOI
TL;DR: In this paper , empirical correlations between the 5-day biochemical oxygen demand (BOD5) and organic decomposition time to control organic pollution in various wastewater effluents were established.
Abstract: High biochemical oxygen demand (BOD) concentrations in water minimize oxygen availability, damage ecosystem biodiversity, impair water quality, and spoil freshwater. The increased level of BOD is an indication of severe organic pollution of freshwater. Thus, this study aims to establish empirical correlations between the 5-day biochemical oxygen demand (BOD5) and organic decomposition time to control organic pollution in various wastewater effluents. Ultimate biochemical oxygen demand (UBOD) and minimum and average BODt data sets along with their reaction rates were collected from earlier sampling analyses in the plants used for industrial, domestic (sanitary), and storm (surface) wastewater treatment. Average BOD5/COD ratios were then utilized to calculate existing 5-day dissolved oxygen (DO5) concentration for the estimation of experimental dilution factors (dfs) as a good start in sampling analysis to reach an optimum DO5 concentration. Moreover, the relationships between average BOD5 vs. COD, and BOD5 vs. DO5, were obtained based on the literature with 60–70% oxygen consumption rates required for organic decomposition. Results showed that such BOD5 relationships with time (power equations) or with COD (linear correlations) are helpful for wastewater engineers to generate valuable and accurate results for quality control, without the need to conduct laboratory experiments. The proposed regression equations would facilitate effluent quality assessment, allowing selection of optimal processes to control microbiological contamination or organic constituents in wastewaters.

Journal ArticleDOI
TL;DR: The Zero-Valent Iron Nanoparticles (ZVI NPs) as mentioned in this paper have been used for ground water purification via removal of organic and inorganic compounds, along with the removal of heavy metals and microbes.
Abstract: Nanoparticle synthesis has seen exponential development recently as its characteristics of high surface area, high rate of adsorption, and easy, cost-effective synthesis have been exploited for the purpose of ground water purification via the removal of organic and inorganic compounds, along with the removal of heavy metals and microbes. The synthesis of Zero-Valent Iron Nanoparticles (ZVI NPs) by green methods has proved to be environmentally friendly in many ways as it employs the use of naturally occurring plant extracts. These nanoparticles have large surface areas and efficiently remove heavy metals. The reducing potential of these ZVI NPs is mostly −0.44 V, thus allowing them to reduce heavy metal compounds such as cadmium, lead, zinc, copper, and arsenic present in wastewater. Irradiated nanoparticles have also exhibited antimicrobial resistance and adsorption. It is also observed that nanoparticles show a higher rate of efficacy at a lower pH. The adsorbent, which is ZVI NPs in this case, when present in large doses reduces heavy metal compounds rapidly and effectively.

Journal ArticleDOI
TL;DR: In this article , the authors used HOMER software to simulate the system under study and found that the highest amount of energy production was in July and was related to the hottest season of the year.
Abstract: Today, the use of renewable energy is increasing day by day. The most susceptible to renewable energy is biomass energy because it depends directly on the size of the population and does not have the problems of other renewable energies such as lack of access day and night and constant change throughout the year. For this reason, animal solid waste has been used in the research to supply electrical energy to the study area. In this regard, the amount of animal waste is considered as a source of biomass input energy. HOMER software was used to simulate the system under study. To better compare the competitiveness of this energy, photovoltaic systems and wind turbines have been used as different scenarios of electrical energy production in the study area. The results of scenario analysis showed that in all designed systems, the highest amount of energy production was in July and was related to the hottest season of the year. Among hybrid systems, the biomass system has a higher priority than other systems due to the minimum cost of energy production and total net present cost (NPC). The amount of exhaust gas from the biomass system reached 53.5 kg/yr and the biomass-wind and biomass-wind-solar systems reached 52.5 kg/yr and 52.2 kg/yr, respectively. The surplus generated electricity also increases from 2.91% to 6.65% from the biomass-wind system to the biomass-with-solar system.

Journal ArticleDOI
TL;DR: This study improved the catalytic efficiency toward methyl-parathion and the thermal stability of the MPH from Pseudomonas sp.
Abstract: Pesticides are indispensable in today’s agriculture. Methyl-parathion hydrolase (MPH, E.C.3.1.8.1) could hydrolyze organophosphorus pesticides, including methyl-parathion. MPH could rehabilitate soil and water resources contaminated by organophosphorus pesticides. However, natural MPHs generally exhibited a low tolerance to high temperatures and low catalytic efficiency. In this study, we improved the catalytic efficiency toward methyl-parathion and the thermal stability of the MPH from Pseudomonas sp. WBC-3 through saturation mutagenesis and fusion with self-assembling amphipathic peptides (SAP). The experimental characterization showed that compared to the wild-type enzyme, the kcat/Km of the mutant T271S yielded by saturation mutagenesis was increased by 224.3% compared to the wild-type MPH. T50 and Tm of SAP3-MPH with an SAP fused at the N-terminus were increased by 6.2°C and 6.0°C, respectively. Compared to the wild-type enzyme, T271S fused with SAP3 at the N-terminus (SAP3-T271S) exhibited a 2.1-fold increase in kcat/Km without significantly affecting the thermal stability. The simultaneous improvement of the catalytic efficiency and thermal stability of MPH would be beneficial for its application in the degradation and detection of organophosphorus pesticides. Furthermore, our study provides a potential combination strategy for the design of the other enzyme preparations of pollutant degradation.

Journal ArticleDOI
TL;DR: In this article , the authors used cathodic electrodeposition (CED) to coat the cast magnesium alloy Mg-9Al-1Zn-xRE with aluminum powder and epoxy, and the results showed that CED epoxy coatings have superior adhesiveness and corrosion resistance compared to powder-coated aluminum and cast magnesium.
Abstract: Cathodic electrodeposition (CED) was used to coat the cast magnesium alloy Mg-9Al-1Zn-xRE with aluminum powder and epoxy. Immersion and salt spray tests (ASTM B117) at room temperature for a total of 240 hours have been performed to assess the corrosion performances of AZ91D magnesium alloy. At each 24-hour interval, the samples were checked for any damage or deterioration of the coating surface morphology. The X-ray diffraction (XRD) analysis confirmed the phases, and scanning electron microscopy (SEM) with EDS analysis confirmed the phase composition. The electrochemical results show that CED epoxy coatings have superior adhesiveness and corrosion resistance compared to powder-coated aluminum and cast magnesium. The salt spray and immersion test results also confirm that CED epoxy coating exhibits good corrosion resistance.

Journal ArticleDOI
TL;DR: In this paper , the effect of titanium nanoparticles in a waste cooking oil biodiesel blend on a diesel engine's performance and how it emits were studied by using scanning electron microscopy, TEM, and energy dispersive X-ray analysis.
Abstract: People are using biodiesel in compression ignition engines because it is more environmentally friendly and can be used as a good alternative to diesel. There is a new technology called nanoparticles that can change the way a fuel works. Because waste cooking has a lot of oil in it, it can make biodiesel. To make biodiesel, transesterification was used to turn nonedible oil from waste cooking oil into biodiesel that could be used. Nanoparticles made of titanium oxide were studied by using scanning electron microscopy, transmission electron microscopy, as well as energy dispersive X-ray analysis, among other things. TiO2 nanoparticles are spread out in different amounts in the biodiesel blend. The dosage levels range from 25, 50, 75, and 100 ppm. Tests on how titanium nanoparticles in a waste cooking oil biodiesel blend affect a diesel engine’s performance and how it emits were conducted in this study too. At a steady speed, the engine was used when there was a lot of work to do. Tests show that the WCOME 20 TiO2 100 ppm blend worked well. With the increase in the concentration of nanoparticles, there is an increase in brake thermal efficiency and at the same time, there is a decrease in BSFC. It is also less harmful to the environment than other blends, except for NOx, which does no’t change.

Journal ArticleDOI
TL;DR: In this paper , the effects of various DESs on the extractable content of palmatine and berberine in Phellodendron chinense Schneid (PcS) were investigated.
Abstract: Taking Phellodendron chinense Schneid (PcS) as the raw material with ultrasonic-assisted eutectic solvent, the effects of various DESs on the extractable content of palmatine and berberine in PcS were investigated. On the basis of the single-factor test, the best DES was determined to be choline chloride and 1,3-propanediol (mole ratio 1 : 2). After optimizing by the response surface method, the optimum extraction conditions were as follows: the solid-liquid ratio was 1 : 30 (w/v), water content was 30% (v/v), vortex time was 7 min, ultrasonic time was 20 min, ultrasonic temperature was 60°C, ultrasonic power was 400 W, and the content of palmatine in PcS was 5.421 ± 0.283 mg/g, and the content of berberine in PcS was 15.573 ± 0.539 mg/g. Therefore, DES prepared from choline chloride and 1,3-propanediol can be used to extract palmatine and berberine from PcS. The optimized process conditions determined by the response surface method are reliable and can provide a reference for the green extraction of effective components from PcS.