scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cell Biology in 1975"


Journal ArticleDOI
TL;DR: In this article, it was shown that in vitro completion of these nascent light chains resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chain, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same moll wt, as the precursor of the light chain.
Abstract: Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane-bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.

2,571 citations


Journal ArticleDOI
Awtar Krishan1
TL;DR: A rapid method for the flow microfluorometric determination of the DNA content per cell is described, which requires a minimal amount of material, and avoids formation of cell clumps.
Abstract: A rapid method for the flow microfluorometric determination of the DNA content per cell is described. Incubation of cells in a hypotonic solution of propidium iodide results in disruption of the cell membrane and rapid staining of nuclear chromatin. DNA distribution histograms generated from cells stained by this method are identical to those generated after fixation and RNase digestion. In contrast to some earlier described methods, the present technique is rapid (5 min of processing), requires a minimal amount of material, and avoids formation of cell clumps.

1,751 citations


Journal ArticleDOI
TL;DR: These results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein- synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.
Abstract: The data presented in this paper demonstrate that native small ribosomal subunits from reticulocytes (containing initiation factors) and large ribosomal subunits derived from free polysomes of reticulocytes by the puromycin-KCl procedures can function with stripped microsomes derived from dog pancreas rough microsomes in a protein-synthesizing system in vitro in response to added IgG light chain mRNA so as to segregate the translation product in a proteolysis-resistant space. No such segregation took place for the translation product of globin mRNA. In addition to their ability to segregate the translation product of a specific heterologous mRNA, native dog pancreas rough microsomes as well as derived stripped microsomes were able to proteolytically process the larger, primary translation product in an apparently correct manner, as evidenced by the identical mol wt of the segregated translation product and the authentic secreted light chain. Segregation as well as proteolytic processing by native and stripped microsomes occurred only during ongoing translation but not after completion of translation. Attempts to solubilize the proteolytic processing activity, presumably localized in the microsomal membrane by detergent treatment, and to achieve proteolytic processing of the completed light chain precursor protein failed. Taken together, these results establish unequivocally that the information for segregation of a translation product is encoded in the mRNA itself, not in the protein-synthesizing apparatus; this provides strong evidence in support of the signal hypothesis.

1,052 citations


Journal ArticleDOI
TL;DR: The demonstration on SDS gels that the slow component of axonal transport is composed of a small number of polypeptides which have identical molecular weights in neurons from different mammalian species suggests that these polypePTides comprise fundamental structures of vertebrate neurons.
Abstract: This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively labeled axonal polypeptides in the rat ventral motor neuron and the cat spinal ganglion sensory neuron. Comparison of the slow component polypeptides from these two sources using sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis revealed that they are identical. In both cases five polypeptides account for more than 75% of the total radioactivity present in the slow component. Two of these polypeptides have been tentatively identified as tubulin, the microtubule protein, on the basis of their molecular weights. The three remaining polypeptides with molecular weights of 212,000, 160,000, and 68,000 daltons are constitutive, and as such appear to be associated with a single structure which has been tentatively identified as the 10-nm neurofilament. The 212,000-dalton polypeptide was found to comigrate in SDS gels with the heavy chain of chick muscle myosin. The demonstration on SDS gels that the slow component is composed of a small number of polypeptides which have identical molecular weights in neurons from different mammalian species suggests that these polypeptides comprise fundamental structures of vertebrate neurons.

937 citations


Journal ArticleDOI
TL;DR: For example, cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine as discussed by the authors and the attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid.
Abstract: Cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine. The attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid. Cells which do not normally adhere to solid surfaces, such as sea urchin eggs, attach as well as cells which normally do so, such as amebas or mammalian cells in culture. The adhesion is interpreted simply as the interaction between the polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of cells to the polylysine-treated surfaces can be exploited for a variety of experimental manipulations. In the preparation of samples for scanning or transmission electron microscopy, the living material may first be attached to a polylysine-coated plate or grid, subjected to some experimental treatment (fertilization of an egg, for example), then transferred rapidly to fixative and further passed through processing for observation; each step involves only the transfer of the plate or grid from one container to the next. The cells are not detached. The adhesion of the cell may be so firm that the body of the cell may be sheared away, leaving attached a patch of cell surface, face up, for observation of its inner aspect. For example, one may observe secretory vesicles on the inner face of the surface (3) or may study the association of filaments with the inner surface (Fig. 1). Subcellular structures may attach to the polylysine-coated surfaces. So far, we have found this to be the case for nuclei isolated from sea urchin embryos and for the microtubules of flagella, which are well displayed after the membrane has been disrupted by Triton X-100 (Fig. 2).

762 citations


Journal ArticleDOI
TL;DR: The structural basis of the permeability barrier in mammalian epidermis was examined by tracer and freeze-fracture techniques and it was concluded that the primary barrier to water loss is formed in the stratum granulosum and is subserved by intercellular deposition of lamellar bodies.
Abstract: The structural basis of the permeability barrier in mammalian epidermis was examined by tracer and freeze-fracture techniques. Water-soluble tracers (horesradish peroxidase, lanthanum, ferritin) were injected into neonatal mice or into isolated upper epidermal sheets obtained with staphylococcal exfoliatin. Tracers percolated through the intercellular spaces to the upper stratum granulosum, where further egress was impeded by extruded contents of lamellar bodies. The lamellar contents initially remain segregated in pockets, then fuse to form broad sheets which fill intercellular regions of the stratum corneum, obscuring the outer leaflet of the plasma membrane. These striated intercellular regions are interrupted by periodic bulbous dilatations. When adequately preserved, the interstices of the stratum corneum are wider, by a factor of 5-10 times that previously appreciated. Freeze-fracture replicas of granular cell membranes revealed desmosomes, sparse plasma membrane particles, and accumulating intercellular lamellae, but no tight junctions. Fractured stratum corneum displayed large, smooth, multilaminated fracture faces. By freeze-substitution, proof was obtained that the fracture plane had diverted from the usual intramembranous route in the stratum granulosum to the intercellular space in the stratum corneum. We conclude that: (a) the primary barrier to water loss is formed in the stratum granulosum and is subserved by intercellular deposition of lamellar bodies, rather than occluding zonules; (b) a novel, intercellular freeze-fracture plane occurs within the stratum corneum; (c) intercellular regions of the stratum corneum comprise an expanded, structurally complex, presumably lipid-rich region which may play an important role in percutaneous transport.

676 citations


Journal ArticleDOI
TL;DR: Through the analysis of isolated, demembranated brush borders decorated with the myosin subfragment, S1, it is determined that all the microvillar actin filaments have the same polarity.
Abstract: The association of actin filaments with membranes is now recognized as an important parameter in the motility of nonmuscle cells. We have investigated the organization of one of the most extensive and highly ordered actin filament-membrane complexes in nature, the brush border of intestinal epithelial cells. Through the analysis of isolated, demembranated brush borders decorated with the myosin subfragment, S1, we have determined that all the microvillar actin filaments have the same polarity. The S1 arrowhead complexes point away from the site of attachment of actin filaments at the apical tip of the microvillar membrane. In addition to the end-on attachment of actin filaments at the tip of the microvillus, these filaments are also connected to the plasma membrane all along their lengths by periodic (33 nm) cross bridges. These bridges were best observed in isolated brush borders incubated in high concentrations of Mg++. Their visibility is attributed to the induction of actin paracrystals in the filament bundles of the microvilli. Finally, we present evidence for the presence of myosinlike filaments in the terminal web region of the brush border. A model for the functional organization of actin and myosin in the brush border is presented.

578 citations


Journal ArticleDOI
TL;DR: It is concluded that the channels are the most likely candidate for structural equivalents of the small pores of the capillary wall since they are continuous, water-filled passages, and are provided with one or more strictures of less than 100 A.
Abstract: Two heme-peptides (HP) of about 20-A diameter (heme-undecapeptide [H11P], mol wt approximately 1900 and heme-octapeptide [H8P], mol wt approximately 1550), obtained by enzymic hydrolysis of cytochrome c, were sued as probe molecules in muscle capillaries (rat diaphragm). They were localized in situ by a perixidase reaction, enhanced by the addition of imidazole to the incubation medium. Chromatography of plasma samples showed that HPs circulate predominantly as monomers for the duration of the experiments and are bound by aldehyde fixatives to plasma proteins to the extent of approximately 50% (H8P) to approximately 95% (H11P). Both tracers cross the endothelium primarily via plasmalemmal vesicles which become progressively labeled (by reaction product) from the blood front to the tissue front of the endothelium, in three successive resolvable phases. By the end of each phase the extent of labeling reaches greater than 90% of the corresponding vesicle population. Labeled vesicles appear as either isolated units or chains which form patent channels across the endothelium. The patency of these channels was checked by specimen tilting and graphic analysis of their images. No evidence was found for early or preferential marking of the intercellular junctions and spaces by reaction product. It is concluded that the channels are the most likely candidate for structural equivalents of the small pores of the capillary wall since they are continuous, water-filled passages, and are provided with one or more strictures of less than 100 A. Their frequency remains to be established by future work.

536 citations


Journal ArticleDOI
TL;DR: The asymmetric density of RCAI receptors across the zona was confirmed by ferritin- RCAI and fluorescein-RCAI labeling of mechanically isolated zonae pellucidae, indicating that the RCAi-binding sites are more densely distributed in the exterior zona regions.
Abstract: Receptors for Ricinus communis agglutinin I (RCAI), concanavalin A (Con A), and wheat germ agglutinin (WGA) were localized on the zonae pellucidae and plasma membranes of hamster, mouse, and rat eggs with ferritin-lectin conjugates Intact eggs labeled with the ferritin conjugates showed dense concentrations of RCAI and WGA receptors in the outermost regions of their zonae pellucidae and sparse distributions of Con A receptors throughout the zonae Ferritin-lectin labeling was specific, since inhibitory saccharides effectively blocked labeling The asymmetric density of RCAI receptors across the zona was confirmed by ferritin-RCAI and fluorescein-RCAI labeling of mechanically isolated zonae pellucidae, indicating that the RCAI-binding sites are more densely distributed in the exterior zona regions Plasma membranes of rodent eggs contained RCAI, WGA, and Con A receptors These receptors were found to be more or less randomly distributed on surfaces of aldehyde-fixed eggs or on eggs labeled near 0 degrees C However, eggs incubated at 25 degrees C showed aggregated WGA- and Con A-binding site distributions on their plasma membranes This indicates that lectin-induced receptor redistribution occurs at this temperature The possibility that plasma membrane receptor mobility is a requirement for sperm-egg fusion is discussed

473 citations


Journal ArticleDOI
TL;DR: These findings, combined with oxygen consumption studies on resting and stimulated PMN in the presence or absence of NADH, indicate that NADH oxidase is a surface enzyme in human PMN, which is internalized duringphagocytosis and retains its peroxide-generating capacity within the phagocytic vacuole.
Abstract: The ultrastructural localization of NADH oxidase, a possible enzyme in the increased oxidative activity of polymorphonuclear leukocytes (PMN) during phagocytosis, was studied. A new cytochemical technique for the localization of H2O2, a product of NADH oxidase activity, was developed. Cerous ions, in the presence of peroxide, form an electron-dense precipitate. Resting and phagocytically stimulated PMN were exposed to cerous ions at pH 7.5 to demonstrate sites of NADH-dependent, cyanide-insensitive H2O2 production. Resting PMN exhibites slight activity on the plasma membrane; phagocytizing PMN had extensive deposits of reaction product localized within the phagosome and on the plasma membrane. Peroxide involvement was demonstrated by the inhibitory effect of catalase on cerium precipitation; the surface localization of the enzyme responsible was confirmed by using nonpenetrating inhibitors of enzymatic activity. A correlative study was performed with an NADH-dependent, tetrazolium-reduction system. As with cerium, formazan deposition on the surface of the cell was NADH dependent, cyanide insensitive, and stimulated by phagocytosis. Superoxide dismutase did not inhibit tetrazolium reduction, as observed cytochemically, indicating direct enzymatic dye reduction without superoxide interposition. These findings, combined with oxygen consumption studies on resting and stimulated PMN in the presence or absence of NADH, indicate that NADH oxidase is a surface enzyme in human PMN. It is internalized during phagocytosis and retains its peroxide-generating capacity within the phagocytic vacuole.

459 citations


Journal ArticleDOI
TL;DR: Small vascular units consisting of an arteriole, its capillaries, and the emerging venule (ACV units) were identified in the rat omentum and mesentery and it was shown that the intercellular junctions of the vascular endothelium vary characteristically from one segment to another in the microvasculature.
Abstract: Small vascular units consisting of an arteriole, its capillaries, and the emerging venule (ACV units) were identified in the rat omentum and mesentery. They were fixed in situ and processed for electron microscopy either as whole units or as dissected segments. Systematic examination of the latter (in thin sections, as well as in freeze-cleaved preparations) showed that the intercellular junctions of the vascular endothelium vary characteristically from one segment to another in the microvasculature. In arterioles, the endothelium has continuous and elaborate tight junctions with interpolated large gap junctions. The capillary endothelium is provided with tight junctions formed by either branching or staggered strands; gap junctions are absent at this level. The pericytic venules exhibit loosely organized endothelial junctions with discontinuous low-profile ridges and grooves, usually devoid of particles. No gap junctions were found in these vessels. The endothelium of muscular venules has the same type of junctions (discontinuous ridges and grooves of low profile); in addition, it displays isolated gap junctions of smaller size and lower frequency than in arterioles. The term communicating junction (macula communicans) is proposed as a substitute for gap junctions, since the latter is inappropriate, in general, and confusing in the special case of the vascular endothelium.

Journal ArticleDOI
TL;DR: Mouse kidneys were perfused with Krebs-Ringer bicarbonate buffer containing native, anionic horse spleen ferritin or various cationized derivatives, and the glomerular localization of the probe molecules determined by electron microscopy suggested that intrinsic negative charges are present in the GBM and endothelium.
Abstract: Mouse kidneys were perfused with Krebs-Ringer bicarbonate buffer (KRB) containing native, anionic horse spleen ferritin or various cationized derivatives, and the glomerular localization of the probe molecules determined by electron microscopy. Ferritins cationic with respect to the medium (KRB, pH 7.45) accumulated in the subendothelial layers of the glomerular basement membrane (GBM) in amounts far exceeding those observed with anionic ferritins, the degree being greater for the more cationized derivatives. Strongly cationized ferritins, in addition permeated the full thickness of the GBM in considerable amounts, but appeared to be retarded from entry into the urinary spaces at the level of the filtration slits. Very strongly cationized derivatives adhered to glomerular endothelium and GBM and formed aggregates in the outer layers of the latter. The results suggest that intrinsic negative charges are present in the GBM and endothelium, and that the barrier function of the glomerular capillary wall may be ascribed in part to its electrophysical properties.

Journal ArticleDOI
TL;DR: Spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in sperMatids is predominantly heterogeneousnuclear RNA; and the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.
Abstract: A whole-mount electron microscope technique has allowed direct visualization of the transcription process in mouse spermatids. Thes observations have been supported by light and electron microscope autoradiographic techniques that employ [3H]uridine and [3H]arginine in attempts to clarify mechanisms of RNA synthesis and their relationship to nuclear histone changes throughout spermiogenesis. Early spermatid genomes are dispersed almost completely, whereas in later spermiogenic steps the posterior or flagellar nuclear region is readily dispersed and the anterior or subacrosomal nuclear region remains compact. Display of genome segments permits identification of regions where transcription complexes, presumably heterogeneous nuclear RNA species, are seen related to chromatin. These complexes appear as ribonucleoprotein chains, some of them of considerable length, decreasing progressively in number in late spermiogenic steps. This decrease coincides with diminishing rates of [3H]uridine incorporation. Two distinct patterns of chromatin have been identified: a beaded chromatin type associated with transcription complexes encounterd in early spermatids; and a smooth chromatin type not involved in transcriptive activity observed in advanced spermiogenic genomes. Protein particles staining densely with phosphotungstic acid become apparent in nuclei of spermatids after [3H]arginine incorporation becomes significant. There is no structural or autoradiographic evidence for the presence of nucleoli during spermiogenesis. From these data and from previous experimental findings, we conclude that: (a) spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in spermatids is predominantly heterogeneous nuclear RNA; and (b) the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.

Journal ArticleDOI
TL;DR: The fact that specialized contacts between different types of neurons interacting in the outer plexiform layer have specific arrangements of intramembrane particles strongly suggests that the internal structure of the synaptic membranes is intimately correlated with synaptic function.
Abstract: Freeze-fracture analysis of the neural connections in the outer plexiform layer of the retina of primates (Macaca mulatta and Macaca arctoides) demonstrates a remarkable diversity in the internal structure of the synaptic membranes. In the invaginating synapses of cone pedicles, the plasma membrane of the photoreceptor ending contains an aggregate of A-face particles, a hexagonal array of synaptic vesicle sites, and rows of coated vesicle sites, which are deployed in sequence from apex to base of the synaptic ridge. The horizontal cell dendrites lack vesicle sites and have two aggregates of intramembrane A-face particles, one at the interface with the apex of the synaptic ridge, the other opposite the tip of the invaginating midget bipolar dendrite. Furthermore, the horizontal cell dendrites are interconnected by a novel type of specialized junction, characterized by: (a) enlarged intercellular cleft, bisected by a dense plate and traversed by uniformly spaced crossbars; (b) symmetrical arrays of B-face particles arranged in parallel rows within the junctional membranes; and (c) a layer of dense material on the cytoplasmic surface of the membranes. The plasmalemma of the invaginating midget bipolar dendrite is unspecialized. At the contact region between the basal surface of cone pedicles and the dendrites of the flat midget and diffuse cone bipolar cells, the pedicle membrane has moderately clustered A-face particles, but no vesicle sites, whereas the adjoining membrane of the bipolar dendrites contains an aggregate of B-face particles. The invaginating synapse of rod spherules differs from that of cone pedicles, because the membrane of the axonal endings of the horizontal cells only has an A-face particle aggregate opposite the apex of the synaptic ridge. Specialized junctions between horizontal cell processes, characterized by symmetrical arrays of intramembrane B-face particles, are also present in the neuropil underlying the photoreceptor endings. Small gap junctions connect the processes of the horizontal cells; other gap junctions probably connect the bipolar cell dendrites which make contact with each cone pedicle. Most of the junctional specializations typical of the primate outer plexiform layer are also found in the rabbit retina. The fact that specialized contacts between different types of neurons interacting in the outer plexiform layer have specific arrangements of intramembrane particles strongly suggests that the internal structure of the synaptic membranes is intimately correlated with synaptic function.

Journal ArticleDOI
TL;DR: It is concluded that acetylcholine receptors in the surface membranes of chick and rat myotubes developing in cell cultures have a half-life of 22-24 h and evidence suggest that receptors are incorporated into the surface membrane from a presynthesized set of receptors containing about 10% as many alpha-bungarotoxin binding sites as does the surface.
Abstract: [125I mono-iodo-alpha-bungarotoxin is used as a specific marker in a description of acetylcholine receptor metabolism. It is concluded that acetylcholine receptors in the surface membranes of chick and rat myotubes developing in cell cultures have a half-life of 22-24 h. Alpha-bungarotoxin (bound to a receptor which is removed from the membrane) is degraded to monoiodotyrosine which appears in the medium. Several observations are consistent with a model in which receptors or alpha-bungarotoxin-receptor complexes are internalized and then degraded: (a) the rate of appearance of iodotyrosine does not reach its maximal rate until 90 min after alpha-bungarotoxin is bound to the surface receptors; (b) 2,4-dinitrophenol, reduced temperature, and cell disruption all inhibit the degradation process. The degradation of surface receptors is not coupled to the process by which receptors are incorporated into the membrane. Evidence suggest that receptors are incorporated into the surface membrane from a presynthesized set of receptors containing about 10% as many alpha-bungarotoxin binding sites as does the surface. Additionally, a third set of acetylcholine receptors is described containing about 30% as amny binding sites as does the surface. These "hidden" recptors are not precursors yet are not readily accessible for binding of extracellular alpha-bungarotoxin. These findings are discussed in relation to both plasma membrane biosynthesis and control of chemosensitivity in developing and denervated skeletal muscle.

Journal ArticleDOI
TL;DR: The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine.
Abstract: The enzymatic iodination technique has been utilized in a study of the externally disposed membrane proteins of the mouse L cell. Iodination of cells in suspension results in lactoperoxidase-specific iodide incorporation with no loss of cell viability under the conditions employed, less than 3% lipid labeling, and more than 90% of the labeled species identifiable as monoiodotyrosine. 90% of the incorporated label is localized to the cell surface by electron microscope autoradiography, with 5-10% in the centrosphere region and postulated to represent pinocytic vesicles. Sodium dodecylsulfate-polyacrylamide gels of solubilized L-cell proteins reveals five to six labeled peaks ranging from 50,000 to 200,000 daltons. Increased resolution by use of gradient slab gels reveals 15-20 radioactive bands. Over 60% of the label resides in approximately nine polypeptides of 80,000 to 150,000 daltons. Various controls indicate that the labeling pattern reflects endogenous membrane proteins, not serum components. The incorporated 125-I, cholesterol, and one plasma membrane enzyme marker, alkaline phosphodiesterase I, are purified in parallel when plasma membranes are isolated from intact, iodinated L cells. The labeled components present in a plasma membrane-rich fraction from iodinated cells are identical to those of the total cell, with a 10- to 20-fold enrichment in specific activity of each radioactive peak in the membrane.

Journal ArticleDOI
TL;DR: Colchicine has no effect on transport of secretory proteins in the rough or smooth endoplasmic reticulum but it causes these proteins to accumulate in Golgi-derived secretory vesicles and in vivo at 10-25 mumol/100 g body weight.
Abstract: Colchicine, both in vitro and in vivo, inhibits secretion of albumin and other plasma proteins. In vitro, secretion by rat liver slices is inhibited at 10-minus 6 M with maximal effect at 10-minus 5 M. Inhibition of secretion is accompanied by a concomitant retention of nonsecreted proteins within the slices. Colchicine does not inhibit protein synthesis at these concentrations. Vinblastine also inhibits plasma protein secretion but lumicolchicine, griseofulvin, and cytochalasin B do not. Colchicine also acts in vivo at 10-25 mumol/100 g body weight. Inhibition of secretion is not due to changes in the intracellular nucleotide phosphate levels. Colchicine, administered intravenously, acts within 2 min and its inhibitory effect lasts for at least 3 h. Colchicine has no effect on transport of secretory proteins in the rough or smooth endoplasmic reticulum but it causes these proteins to accumulate in Golgi-derived secretory vesicles.

Journal ArticleDOI
TL;DR: Sermatozoa from two brothers who are not twins were found to be straight and immotile and the simplest explanation for the simultaneous lack of arms and sperm motility appears to be that the two brothers have a genetic disorder involving production, assembly, or attachment of the dynein arms.
Abstract: Sermatozoa from two brothers who are not twins were found to be straight and immotile. Examinations of the sperm showed that oxygen consumption and lactic acid production were normal; viability tests showed that the percentage of dead sperm was not increased. The ultrastructural appearance of the sperm tail was normal except for a complete lack of dynein arms and some irregularities in the arrangement of the accessory fibers and the longitudinal columns of the fibrous sheath. The mitochondrial apparatus and the sperm head conform to the conventional model. According to the sliding-filament hypothesis first proposed by Afzelius (1959. J. Biophys. Biochem. Cytol. 5:269.), the arms are responsible for the bending movements of the tail. The simplest explanation for the simultaneous lack of arms and sperm motility appears to be that the two brothers have a genetic disorder involving production, assembly, or attachment of the dynein arms.

Journal ArticleDOI
TL;DR: Using Nomarski light microscopy, the behavior of moving cells in isolated corneas with the migratory activities of the same cells in artificial collagen lattices and on glass is compared to show that, while CIM affects cell movement, fibroblasts can use one another as a substratum.
Abstract: The early chick cornea is composed of an acellular collagenous stroma lined with an anterior epithelium and a posterior endothelium. At stage 27-28 of development (5 1/2 days), this stroma swells so that the cornea is 75-120 mum thick. At the same time, fibroblasts that originate from the neural crest begin to invade this stroma. Using Nomarski light microscopy, we have compared the behavior of moving cells in isolated corneas with the migratory activities of the same cells in artificial collagen lattices and on glass. In situ, fibroblasts have cyclindrical bodies from which extend several thick pseudopodia and/or finer filopodia. Movement is accompanied by activity in these cytoplasmic processes. The flat ruffling lamelli-podia that characterize these cells on glass are not seen in situ, but the general mechanism of cell movement seems to be the same as that observed in vitro: either gross contraction or recoil of the cell body (now pear shaped) into the forward cell process, or more subtle "flowing" of cytoplasm into the forward cell process without immediate loss of the trailing cell process. We filmed collisions between cells in situ and in three-dimensional collagen lattices. These fibroblasts show, in their pair-wise collisions, the classical contact inhibition of movement (CIM) exhibited in vitro even though they lack ruffled borders. On glass these cells multi-layer, showing that, while CIM affects cell movement, fibroblasts can use one another as a substratum. Postmitotic cells show CIM in moving away from each other. Interestingly, dividing cells in situ do not exhibit surface blebbing, but do extend filopodia at telophase. The role of CIM in controlling cell movement in vivo and in vitro is stressed in the discussion.

Journal ArticleDOI
TL;DR: High resolution epifluorescent microscopy reveals that fibers stained with the actin antibody show a continuous fluorescence, while fibers reacted with the tropomyosin antibodies show a periodic fluorescence.
Abstract: An antibody against purified chicken skeletal muscle tropomyosin is used in indirect immunofluorescence to visualize the localization of tropomyosin in a variety of nonmuscle cells. The antibody produces a fluorescent pattern which is very similar to that obtained with an actin-specific antibody. This pattern is composed of fluorescent fibers which are shown to be coincident with the fibers seen with phase-contrast optics. High resolution epifluorescent microscopy reveals that fibers stained with the actin antibody show a continuous fluorescence, while fibers reacted with the tropomyosin antibody show a periodic fluorescence. Measurements indicate that the lengths of the fluorescent segments are variable with an average of 1.2 mum while the spacing between segments is approximately 0.4 mum.

Journal ArticleDOI
TL;DR: Calculations based on the size and shape of the myosin filaments, the dimensions of theMyosin molecule and analysis of the bare zone reveal that the synthetic platelet myosins filaments consists of 28 myosIn molecules arranged in a bipolar array with the heads of two myos in molecules projecting from the backbone of the filament at 14-15 nm intervals.
Abstract: We have used electron microscopy and solubility measurements to investigate the assembly and structure of purified human platelet myosin and myosin rod into filaments. In buffers with ionic strengths of less than 0.3 M, platelet myosin forms filaments which are remarkable for their small size, being only 320 nm long and 10-11 nm wide in the center of the bare zone. The dimensions of these filaments are not affected greatly by variation of the pH between 7 and 8, variation of the ionic strength between 0.05 and 0.2 M, the presence or absence of 1 mM Mg++ or ATP, or variation of the myosin concentration between 0.05 and 0.7 mg/ml. In 1 mM Ca++ and at pH 6.5 the filaments grow slightly larger. More than 90% of purified platelet myosin molecules assemble into filaments in 0.1 M KC1 at pH 7. Purified preparations of the tail fragment of platelet myosin also form filaments. These filaments are slightly larger than myosin filaments formed under the same conditions, indicating that the size of the myosin filaments may be influenced by some interaction between the head and tail portions of myosin molecules. Calculations based on the size and shape of the myosin filaments, the dimensions of the myosin molecule and analysis of the bare zone reveal that the synthetic platelet myosin filaments consists of 28 myosin molecules arranged in a bipolar array with the heads of two myosin molecules projecting from the backbone of the filament at 14-15 nm intervals. The heads appear to be loosely attached to the backbone by a flexible portion of the myosin tail. Given the concentration of myosin in platelets and the number of myosin molecules per filament, very few of these thin myosin filaments should be present in a thin section of a platelet, even if all of the myosin molecules are aggregated into filaments.

Journal ArticleDOI
TL;DR: In preparations of mitochondria isolated from growing spheroplasts, ribosomes appear to be found to specific regions of the outer membrane, namely those regions which are in close association or in contact with the inner mitochondrial membrane.
Abstract: Growing yeast spheroplasts were shown to have, on the average, four times the number of cytoplasmic ribosomes in contact with the outer mitochondrial membrane compared to starved spheroplasts. Ribosomes in contact with mitochondria in the growing spheroplast preparation, like free cytoplasmic ribosomes, exist primarily as polysome structures. In the starved spheroplast preparation, both mitochondria-bound and free cytoplasmic ribosomes exist primarily as monosomes. Mitochondria isolated from growing spheroplasts in a medium containing lmM Mg++ have cytoplasmic ribosomes bound directly to the outer membrane. These ribosomes can be quantitatively removed by washing the mitochondria with 2 mM EDTA. Mitochondria from starved spheroplasts are capable of accepting either free cytoplasmic polysomes or cytoplasmic polysomes extracted from mitochondria. However, the extent of polysome binding to mitochondria was shown to be a direct function of the Mg++ concentration; a smaller percentage of the input polysomes bind as the Mg++ concentration is lowered. At 1 mM Mg++, neither free cytoplasmic nor mitochondria-bound polysomes bind to mitochondria. Nevertheless, when growing spheroplasts are broken and mitochondria isolated in medium containing 1 mM Mg++, the mitochondria are seen to have cytoplasmic ribosomes firmly attached to the outer membrane. This result, in addition to our earlier data (Kellems, R. E., and R. A. Butow. 1974. J. Biol. Chem. 249:3304-3310), support the view that cytoplasmic ribosomes attached to the outer membrane of purified mitochondria were attached in vivo. In preparations of mitochondria isolated from growing spheroplasts, ribosomes appear to be found to specific regions of the outer membrane, namely those regions which are in close association or in contact with the inner mitochondrial membrane. This is particularly evident with mitochondria in a condensed configuration. This finding suggests a mechanism whereby cytoplasmically synthesized mitochondrial protein could be transferred by a process of vectorial translation across both membranes of the organelle.

Journal ArticleDOI
TL;DR: Evidence is presented that histone fractions compete with each other for accumulation in the nucleus as well as other small proteins, but, in contrast to these proteins, they accumulated inThe nucleus to different extents, depending on the total amount of histone injected into the oocyte and the identity of the histone.
Abstract: A technique is presented which enables one to measure the extent to which a protein enters and accumulates in the nucleus of the frog oocyte. In this method, the protein, labeled with 125-I, is microinjected into the oocyte. After incubation, the oocyte is manually enucleated and the radioactivity in the nucleus and cytoplasm is determined. Using this technique, proteins lighter than 20,000 daltons were found to enter the nucleus and completely equilibrate between the nucleus and cytoplasm within 24 h. The entry of proteins heavier than 69,000 daltons was severely hindered. Histones and histone fractions entered as quickly as other small proteins, but, in contrast to these proteins, they accumulated in the nucleus to different extents, depending on the total amount of histone injected into the oocyte and the identity of the histone. Evidence is presented that histone fractions compete with each other for accumulation in the nucleus.

Journal ArticleDOI
TL;DR: The induction of ovum maturation does not require attachment of the hormone to the oocyte itself or to follicle cells in its immediate vicinity, suggesting that binding of iodinated hormone was confined to specific and saturable receptor sites.
Abstract: The distribution of binding sites for human chorionic gonadotropin (hCG) in the preovulatory follicle was studied by autoradiography. An ovulatory dose (10 IU/rat) of [125I]hCG (1.4 muCi/IU) was administered intravenously, and large Graafian follicles were isolated 3 h later by microdissection. Injection of excess unlabeled hCG (500 IU/rat) prevented uptake of radioactivity by the follicle, indicating that binding of iodinated hormone was confined to specific and saturable receptor sites. The density of bound hormone molecules was highest in the theca interna and in three to four layers of mural granulosa cells adjacent to the basement membrane; labeling was chiefly associated with the cell borders. No significant binding could be detected either on the oocyte or on the cumulus cells surrounding the oocyte. We therefore suggest that the induction of ovum maturation does not require attachment of the hormone to the oocyte itself or to follicle cells in its immediate vicinity.

Journal ArticleDOI
TL;DR: In this paper, the results show that the filaments only occur on microtubules assembled in the presence of the MAPs and it is therefore concluded that the Filaments are composed of the high molecular weight MAP's.
Abstract: Microtubules isolated from brain extracts by in vitro assembly (1, 19, 23) are composed principally of two tubulins and two high molecular weight proteins (microtubule-associated proteins [MAPS] 1 and 2) (2,5,7,20). Recently, it was demonstrated that in vitro-assembled brain microtubules (neurotubules) are coated with filaments (5, 7) which are similar to the filaments attached to neurotubules in situ (4, 15, 21, 24, 25), and it was suggested that the filaments are composed of the higher molecular weight MAPs (5, 7, 12). In this study, microtubules were assembled in the presence and absence of the MAPs, and thin sections of the microtubules were examined by electron microscopy. The results show that the filaments only occur on microtubules assembled in the presence of the MAPs and it is therefore concluded that the filaments are composed of the high molecular weight MAP's.

Journal ArticleDOI
TL;DR: It is concluded that erythrocyte actin and spectrin associate to form an anastomosing network beneath the ery Throatcyte membrane that presumably functions in restricting the lateral movement of membrane-penetrating particles.
Abstract: Actin was isolated from erythrocyte ghosts. It is identical to muscle actin in its molecular weight, net charge, ability to polymerize into filaments with the double helical morphology, and its decoration with heavy meromyosin (HMM). when erythrocyte ghosts are incubated in 0.1 mM EDTA, actin and spectrin are solubilized. Spectrin has a larger molecular weight than muscle myosin. When salt is added to the EDTA extract, a branching filamentous polymer is formed. However, when muscle actin and the EDTA extract are mixed together in the presence of salt, the viscosity achieved is less than the viscosity of the solution if spectrin is omitted. Thus, spectrin seems to inhibit the polymerization of actin. If the actin is already polymerized, the addition of spectrin increases the viscosity of the solution, presumably by cross-linking the actin filaments. The addition of HMM of trypsin to erythrocyte ghosts results in filament formation in situ. These agents apparently act by detaching erythrocyte actin from spectrin, thereby allowing the polmerization of one or both proteins to occur. Since filaments are not present in untreated erythrocyte ghosts, we conclude that erythrocyte actin and spectrin associate to form an anastomosing network beneath the erythrocyte membrane. This network presumably functions in restricting the lateral movement of membrane-penetrating particles.

Journal ArticleDOI
TL;DR: Evidence is presented that both the 55,000 mol wt protein and the 95,000mol wtprotein (possibly alpha-actinin) are also present in Limulus muscle, Presumably these proteins function in the sperm in holding the actin filaments together.
Abstract: When Limulus sperm are induced to undergo the acrosomal reaction, a process, 50 mum in length, is generated in a few seconds. This process rotates as it elongates; thus the acrosomal process literally screws through the jelly of the egg. Within the process is a bundle of filaments which before induction are coiled up inside the sperm. The filament bundle exists in three stable states in the sperm. One of the states can be isolated in pure form. It is composed of only three proteins whose molecular weights (mol wt) are 43,000, 55,000, and 95,000. The 43,000 mol wt protein is actin, based on its molecular weight, net charge, morphology, G-F transformation, and heavy meromyosin (HMM) binding. The 55,000 mol wt protein is in equimolar ratio to actin and is not tubulin, binds tenaciously to actin, and inhibits HMM binding. Evidence is presented that both the 55,000 mol wt protein and the 95,000 mol wt protein (possibly alpha-actinin) are also present in Limulus muscle. Presumably these proteins function in the sperm in holding the actin filaments together. Before the acrosomal reaction, the actin filaments are twisted over one another in a supercoil; when the reaction is completed, the filaments lie parallel to each other and form an actin paracrystal. This change in their packing appears to give rise to the motion of the acrosomal process and is under the control of the 55,000 mol wt protein and the 95,000 mol wt protein.

Journal ArticleDOI
TL;DR: Although this procedure is similar to that used to polymerize tubulin from mammalian brain, sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows this gel to have actin as a major component and to contain no tubulin.
Abstract: Isotonic extracts of the soluble cytoplasmic proteins of sea urchin eggs, containing sufficient EGTA to reduce the calcium concentration to low levels, form a dense gel on warming to 35-40 degrees C. Although this procedure is similar to that used to polymerize tubulin from mammalian brain, sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows this gel to have actin as a major component and to contain no tubulin. If such extracts are dialyzed against dilute salt solution, they no longer respond to warming, but gelation will occur if they are supplemented with 1 mM ATP and 0.020 M KCl before heating. Gelation is not temperature reversible, but the gelled material can be dissolved in 0.6-1 M KCl and these solutions contain F-actin filaments. These filaments slowly aggregate to microscopic, birefringent fibrils when 1 mM ATP is added to the solution, and this procedure provides a simple method for preparing purified actin. the supernate remaining after actin removal contains the other two components of the gel, proteins of approximately 58,000 and 220,000 mol wt. These two proteins plus actin recombine to form the original gel material when the ionic strength is reduced. This reaction is reversible at 0 degrees C, and no heating is required.

Journal ArticleDOI
TL;DR: Results suggest that the matrix granules in normal and hyperplastic arterial intimas in nonhuman primates contain some hyaluronic acid and one or more isomers of chondroitin sulfate.
Abstract: Proteoglycans were identified and localized histochemically and ultrastructurally in normal and hyperplastic arterial intimas in nonhuman primates (Macaca nemestrina). These regions were consistently more alcianophilic than the adjacent medial layers and this alcianophilia was absent after treatment with glycosaminoglycan-degradative enzymes. Ultrastructurally, the intimal intercellular matrix consisted of numerous, irregularly shaped, 200-500-A diameter granules possessing 30--60-A diameter filamentous projections, and these granules were dispersed between collagen and elastic fibers. The granules exhibited a marked affinity for ruthenium red and were interconnected via their filamentous projections. The ruthenium red-positive granules were intimately associated with the plasma membrane of intimal smooth muscle cells and attached to collagen fibrils and elastic fibers. The matrix granules were completely removed after testicular hyaluronidase or chondroitinase ABC digestion but only partially removed after leech hyaluronidase treatment. These results suggest that the matrix granules contain some hyaluronic acid and one or more isomers of chondroitin sulfate. In addition to the large ruthenium red-positive matrix granules, a smaller class of ruthenium red-positive granule (100--200-A diameter) was present within the basement membranes beneath the endothelium and surrounding the smooth muscle cells. Ruthenium red also exhibited an affinity for the surface coat of the smooth muscle cells. The potential importance of proteoglycans in arterial intimal hyperplasia is discussed.

Journal ArticleDOI
TL;DR: The ability of the centriole to initiate microtubule assembly is a time- dependent process-a ripening effect takes place between prophase and late prometaphase, and Ripening is expressed by an increase in the number and length of tubules found associated with the Centriolar region.
Abstract: Metaphase PtK1 cells, lysed into polymerization-competent microtubule protein, maintain a spindle which will gain or lose birefringence depending on the concentration of disassembled tubulin subunits used in the lysis medium. Concentrations of tubulin subunits greater than the equilibrium monomer value promote a rate and extent of birefringence increase that is proportional to the subunit concentration. Increase in spindle birefringence can be correlated with an increase in tubule number, though the relationship is not strictly linear. Increase in spindle tubule number is due to an vivo-like initiation of tubules at the mitotic centers, as well as tubulin addition onto pre-existing spindle fragments. Colcemid-treated prometaphase cells lysed into polymerization-competent tubulin develop large asters in the region of the centrioles and short tubules at kinetochores, making it unlikely that all microtubule formation in lysed cell preparations is dependent on tubulin addition to short tubule fragments. Asters can also form in colcemid-treated prometaphase cells lysed in tubulin that is incapable of spontaneous tubule initiation, suggesting that the centriolar region serves a tubule-initiator function in our lysed cell preparations. The ability of the centriole to initiate microtubule assembly is a time-dependent process-a ripening effect takes place between prophase and late prometaphase. Ripening is expressed by an increase in the number and length of tubules found associated with the centriolar region.