scispace - formally typeset
Search or ask a question
JournalISSN: 1096-2247

Journal of The Air & Waste Management Association 

Taylor & Francis
About: Journal of The Air & Waste Management Association is an academic journal published by Taylor & Francis. The journal publishes majorly in the area(s): Air quality index & Particulates. It has an ISSN identifier of 1096-2247. Over the lifetime, 4208 publications have been published receiving 132825 citations. The journal is also known as: JA & WMA & Journal of the Air and Waste Management Association.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health.
Abstract: Efforts to understand and mitigate the health effects of particulate matter (PM) air pollution have a rich and interesting history. This review focuses on six substantial lines of research that have been pursued since 1997 that have helped elucidate our understanding about the effects of PM on human health. There has been substantial progress in the evaluation of PM health effects at different time-scales of exposure and in the exploration of the shape of the concentration-response function. There has also been emerging evidence of PM-related cardiovascular health effects and growing knowledge regarding interconnected general pathophysiological pathways that link PM exposure with cardiopulmonary morbidity and mortality. Despite important gaps in scientific knowledge and continued reasons for some skepticism, a comprehensive evaluation of the research findings provides persuasive evidence that exposure to fine particulate air pollution has adverse effects on cardiopulmonary health. Although much of this research has been motivated by environmental public health policy, these results have important scientific, medical, and public health implications that are broader than debates over legally mandated air quality standards.

5,547 citations

Journal ArticleDOI
TL;DR: The data suggest that increased daily mortality is specifically associated with particle mass constituents found in the aerodynamic diameter size range under 2.5 urn, that is, with combustion-related particles.
Abstract: Recent epidemiologic studies have consistently reported increased daily mortality associated with exposures to particulate air pollution. Currently, particulate mass is measured as particles smaller than 10 microns (PM10). Fine (PM2.5) and coarse (PM10-PM2.5) mass and sulfate particle concentrations were measured in six eastern U.S. cities for eight years, and aerosol acidity concentrations were measured for approximately one year. Daily mortality for these metropolitan areas was combined with particulate air pollution and weather measurements. City-specific associations with each measure of particle pollution were estimated by Poisson regression, adjusting for time trends and weather by nonparametric methods. Combined effect estimates were calculated as the inverse variance weighted mean of the city-specific estimates. PM10, PM2.5, and SO4= were each significantly associated with increased daily mortality, while no associations were found with coarse mass nor with aerosol acidity (H+) concentrations. The strongest association was found with PM2.5. A 10 micrograms/m3 increase in two-day mean PM2.5 was associated with a 1.5% (95% CI 1.1% to 1.9%) increase in total daily mortality. Somewhat larger increases were found for deaths caused by chronic obstructive pulmonary disease (+3.3%) and by ischemic heart disease (+2.1%). These data suggest that increased daily mortality is specifically associated with particle mass constituents found in the aerodynamic diameter size range under 2.5 microns, that is, with combustion-related particles.

1,517 citations

Journal ArticleDOI
TL;DR: In this paper, photochemical mechanisms for the atmospheric reactions of 118 VOCs were used to calculate their effects on ozone formation under various NOx conditions in model scenarios representing 39 different urban areas.
Abstract: This paper discusses methods for ranking photochemical ozone formation reactivities of volatile organic compounds (VOCs). Photochemical mechanisms for the atmospheric reactions of 118 VOCs were used to calculate their effects on ozone formation under various NOx conditions in model scenarios representing 39 different urban areas. Their effects on ozone were used to derive 18 different ozone reactivity scales, one of which is the Maximum Incremental Reactivity (MIR) scale used in the new California Low Emission Vehicle and Clean Fuel Regulations. These scales are based on three different methods for quantifying ozone impacts and on six different approaches for dealing with the dependencies of reactivity on NOx. The predictions of the scales are compared, the reasons for their similarities and differences are discussed, and the sensitivities of the scales to NOx and other scenario conditions are examined. Scales based on peak ozone levels were highly dependent on NOx, but those based on integrated ...

1,236 citations

Journal ArticleDOI
TL;DR: Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway.
Abstract: Motor vehicle emissions usually constitute the most significant source of ultrafine particles (diameter <0.1 microm) in an urban environment, yet little is known about the concentration and size distribution of ultrafine particles in the vicinity of major highways. In the present study, particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS), respectively. Measurements were taken 30, 60, 90, 150, and 300 m downwind, and 300 m upwind, from Interstate 405 at the Los Angeles National Cemetery. At each sampling location, concentrations of CO, black carbon (BC), and particle mass were also measured by a Dasibi CO monitor, an aethalometer, and a DataRam, respectively. The range of average concentration of CO, BC, total particle number, and mass concentration at 30 m was 1.7-2.2 ppm, 3.4-10.0 microg/m3, 1.3-2.0 x 10(5)/cm3, and 30.2-64.6 microg/m3, respectively. For the conditions of these measurements, relative concentrations of CO, BC, and particle number tracked each other well as distance from the freeway increased. Particle number concentration (6-220 nm) decreased exponentially with downwind distance from the freeway. Data showed that both atmospheric dispersion and coagulation contributed to the rapid decrease in particle number concentration and change in particle size distribution with increasing distance from the freeway. Average traffic flow during the sampling periods was 13,900 vehicles/hr. Ninety-three percent of vehicles were gasoline-powered cars or light trucks. The measured number concentration tracked traffic flow well. Thirty meters downwind from the freeway, three distinct ultrafine modes were observed with geometric mean diameters of 13, 27, and 65 nm. The smallest mode, with a peak concentration of 1.6 x 10(5)/cm3, disappeared at distances greater than 90 m from the freeway. Ultrafine particle number concentration measured 300 m downwind from the freeway was indistinguishable from upwind background concentration. These data may be used to estimate exposure to ultrafine particles in the vicinity of major highways.

1,020 citations

Journal ArticleDOI
TL;DR: Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution.
Abstract: Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 μm (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-tem-perature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated t...

1,018 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202342
202292
2021150
202097
2019114
201898