scispace - formally typeset
Search or ask a question

Showing papers in "Living Reviews in Relativity in 1999"


Journal ArticleDOI
TL;DR: The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.
Abstract: Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordstrom, Kerr and Kerr-Newman) and relativistic stars (non-rotating and slowly-rotating). The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.

1,569 citations


Journal ArticleDOI
TL;DR: This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD), and particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD.
Abstract: This review is concerned with a discussion of numerical methods for the solution of the equations of special relativistic hydrodynamics (SRHD). Particular emphasis is put on a comprehensive review of the application of high-resolution shock-capturing methods in SRHD. Results obtained with different numerical SRHD methods are compared, and two astrophysical applications of SRHD flows are discussed. An evaluation of the various numerical methods is given and future developments are analyzed.

376 citations


Journal ArticleDOI
TL;DR: The concept of critical phenomena was first discovered by Choptuik as discussed by the authors, who explained the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically selfsimilar.
Abstract: As first discovered by Choptuik, the black hole threshold in the space of initial data for general relativity shows both surprising structure and surprising simplicity. Universality, power-law scaling of the black hole mass, and scale echoing have given rise to the term "critical phenomena". They are explained by the existence of exact solutions which are attractors within the black hole threshold, that is, attractors of codimension one in phase space, and which are typically self-similar. This review gives an introduction to the phenomena, tries to summarize the essential features of what is happening, and then presents extensions and applications of this basic scenario. Critical phenomena are of interest particularly for creating surprising structure from simple equations, and for the light they throw on cosmic censorship and the generic dynamics of general relativity.

300 citations


Journal ArticleDOI
TL;DR: The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds but the attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics.
Abstract: The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than c. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields — and further fields — are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to c, the speed of light. In extended thermodynamics symmetric hyperbolicity — and finite speeds — are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

85 citations