scispace - formally typeset
Search or ask a question

Showing papers in "Medical and Veterinary Entomology in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors, i.e., adult Anopheles mosquitoes were collected across two different eco-geographical settings in Cameroon, during the dry and wet seasons.
Abstract: Understanding the environmental factors affecting the microbiota in malaria vectors may help in the development of novel vector control interventions, similar to paratransgenesis. This study evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors. Adult Anopheles mosquitoes were collected across two different eco‐geographical settings in Cameroon, during the dry and wet seasons. DNA was extracted from the whole individual mosquitoes from each group and processed for microbial analysis using Illumina Miseq sequencing of the V3‐V4 region of the 16S rRNA gene. Data analysis was performed using QIIME2 and R software programs. A total of 1985 mosquitoes were collected and among them, 120 were selected randomly corresponding to 30 mosquitoes per season and locality. Overall, 97 bacterial taxa were detected across all mosquito samples, with 86 of these shared between dry and wet seasons in both localities and species. There were significant differences in bacterial composition between both seasons, with a clear separation observed between the dry and wet seasons (PERMANOVA comparisons of beta diversity, Pseudo‐F = 10.45; q‐value = 0.01). This study highlights the influence of seasonal variation on microbial communities and this variation's impact on mosquito biology and vectorial capacity should be further investigated.

9 citations


Journal ArticleDOI
TL;DR: Aedes aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.
Abstract: The response to recent dengue outbreaks in Burkina Faso was insecticide‐based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80–95% survival post‐exposure), 0.8% Malathion (60–100%), 0.21% pirimiphos‐methyl (75% – 97%), and high resistance to 0.03% deltamethrin (20–70%). PBO pre‐exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1–0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1–0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 ‐ 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.

8 citations


Journal ArticleDOI
TL;DR: Mosquitoes might serve as mechanical vectors of LSDV in case of interrupted feeding, and a putative biological virus transmission by Culicoides biting midges, as suspected from field observations, deserves further investigations.
Abstract: The stable fly Stomoxys calcitrans (Diptera: Muscidae) is considered as the main mechanical vector of the lumpy skin disease virus (LSDV). In addition, the mosquito species Aedes aegypti (Diptera: Culicidae) was shown to transmit the virus from donor to receptor animals. Retention of the virus for several days was shown for two additional tropical mosquito species and the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae). In the present study, viral retention for 10‐ or 7‐days post feeding on virus‐spiked blood through a membrane was shown for field‐collected Aedes japonicus and laboratory‐reared Culex pipiens, two widely distributed mosquito species in temperate regions. Viral DNA could be detected from honey‐coated Flinders Technology Associates (FTA) cards and shedded faeces for 1 or 4 days after an infectious blood meal was given to Ae. aegypti. Virus increase over time and virus dissemination was observed in laboratory‐reared C. nubeculosus, but the virus could be isolated from field‐collected biting midges only from the day of exposure to the blood meal. Thus, mosquitoes might serve as mechanical vectors of LSDV in case of interrupted feeding. A putative biological virus transmission by Culicoides biting midges, as suspected from field observations, deserves further investigations.

6 citations


Journal ArticleDOI
TL;DR: DNA-based blood meal identification and feeding preference of Culicoides midges associated with livestock in India revealed at least 10 species that fed on five mammalian hosts including humans, but surprisingly none tested positive for birds.
Abstract: Knowledge gaps exist on the feeding pattern and host range of bluetongue virus vectors, Culicoides species, associated with livestock in India. Adult midges were trapped with ultraviolet light traps at 13 household farms adjacent to human biotope. Host DNA was isolated from individual females (n = 101; blood engorged‐82, gravid‐4 and parous‐15) and subjected to PCR amplification targeting CytB and 16S rRNA gene fragments followed by sequencing of amplified DNA samples. However, DNA sequences from only 71 individuals (70.3%) comprising of 10 Culicoides species were obtained. Blood meal analysis revealed at least 10 species that fed on five mammalian hosts including humans, but surprisingly none tested positive for birds. Results revealed that Culicoides innoxius tested positive for four not previously recognized species indicating a potential role as a vector species. Likewise, Culicoides shortti and Culicoides hegneri preferred goat and cattle respectively as hosts, whereas Culicoides palpifer preferred cattle along with buffalo as hosts, which is being reported for the first time. This is the first document on DNA‐based blood meal identification and feeding preference of Culicoides midges associated with livestock in India.

5 citations


Journal ArticleDOI
TL;DR: It was showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An.
Abstract: The endosymbiont Wolbachia can have major effects on the reproductive fitness, and vectorial capacity of host insects and may provide new avenues to control mosquito borne pathogens. Anopheles gambiae s.l is the major vector of malaria in Africa but the use of Wolbachia in this species has been limited by challenges in establishing stable transinfected lines and uncertainty around native infections. High frequencies of infection of Wolbachia have been previously reported in An. gambiae collected from the Valle du Kou region of Burkina Faso in 2011 and 2014. Here we re-evaluated the occurrence of Wolbachia in natural samples, collected from Valle du Kou over a 12-year time span, and in addition, expanded sampling to other sites in Burkina Faso. Our results showed that, in contrast to earlier reports, Wolbachia is present at an extremely low prevalence in natural population of An. gambiae. From 5,341 samples analysed only 29 were positive for Wolbachia by nested PCR representing 0.54% of prevalence. No positive samples were found with regular PCR. Phylogenetic analysis of 16S rRNA gene amplicons clustered across supergroup B, with some having similarity to sequences previously found in Anopheles from Burkina Faso. However, we cannot discount the possibility that the amplicon positive samples we detected were due to environmental contamination or were false positives. Regardless, the lack of a prominent native infection in An. gambiae s.l. is encouraging for applications utilising Wolbachia traninsfected mosquitoes for malaria control.

4 citations


Journal ArticleDOI
TL;DR: The study provides the first evidence of pyrethroid‐resistance in Italian Cx.
Abstract: Culex pipiens (Linnaeus), one of the most abundant mosquito species in Europe, plays a crucial role in the endemic transmission of West Nile virus and caused the large outbreak with >1600 human cases in 2018. Although evidence of resistance to pyrethroids has been reported for Cx. pipiens populations from Spain and Greece, resistance monitoring has been largely neglected in Italy. Herein, we investigate susceptibility of Italian Cx. pipiens populations to the pyrethroids permethrin and deltamethrin. Results from WHO‐tube‐bioassays revealed mortalities ranging from 14–54%, indicating high levels of resistance, in four out of 10 populations exposed to permethrin (0.75%) and of 63% in one of three populations exposed to deltamethrin (0.05%). Reduced susceptibility (mortality<98%) was detected in almost all other populations. A clear association is shown between the resistant phenotype and the presence of kdr‐alleles in position 1014 of the VSSC, strongly suggesting its role in reducing susceptibility. The study provides the first evidence of pyrethroid‐resistance in Italian Cx. pipiens populations and reports levels of resistance paralleled in the European region only in Turkey. This highlights the urgent need to implement insecticide‐resistance management plans to restore the efficacy of the nowadays only chemical weapon available to control arbovirus transmission in Europe.

4 citations


Journal ArticleDOI
TL;DR: An escalation in resistance to pyrethroids in Yaoundé's malaria vectors with seasonal variations is revealed, revealing an adequate choice of the implementation period of punctual vector control actions according to the resistance profile will help to potentiate the desired effect and thus improve its efficiency.
Abstract: Constant assessment of insecticide resistance levels is mandatory to implement adequate malaria control tools, but little information is available on the annual dynamics of resistance. We, therefore, monitored variations in resistance in Anopheles gambiae s.l. over four seasons during 2 years in two localities of Yaoundé: urban Etoa‐Meki and peri‐urban Nkolondom. Mosquitoes were collected seasonally at larval stage and reared to adults for insecticide susceptibility tests and molecular analysis of resistance mechanisms. Anopheles coluzzii was found in Etoa‐Meki and An. gambiae in Nkolondom. Low mortalities to pyrethroids were observed (permethrin <10%, deltamethrin <21%), and resistance extended to 5× and 10× diagnostic doses, revealing a marked increase compared to previous studies. A seasonal variation in resistance was observed with the highest levels within dry seasons in Etoa‐Meki and rainy seasons in Nkolondom. The 1014F kdr allele shows a high frequency (0.9), associated with overexpression of metabolic genes (Cyp6M2, Cyp6P4, Cyp9K1, Cyp6Z1, and Cyp6Z2) varying significantly seasonally. This study reveals an escalation in resistance to pyrethroids in Yaoundé's malaria vectors with seasonal variations. An adequate choice of the implementation period of punctual vector control actions according to the resistance profile will help to potentiate the desired effect and thus improve its efficiency.

4 citations


Journal ArticleDOI
TL;DR: The VATP/kDNA multiplex qPCR assay shows that it can be used to evaluate both DNA integrity and determine L. infantum load in L. longipalpis even for low yielded samples, that is, individual midguts.
Abstract: The study aimed to develop a multiplex qPCR to detect Leishmania infantum load in different sandfly sample settings using Leishmania kDNA and sandfly vacuolar ATPase (VATP) subunit C as internal control gene. The amplification of Lutzomyia longipalpis VATP gene was evaluated together with Leishmania infantum kDNA in a multiplex reaction. The concentration of VATP gene oligonucleotides was adjusted until no statistically significant difference was observed between all multiplex standard curves and singleplex curves, that is, only kDNA amplification. Limit of detection (LoD) was measured using a probit model and a cut‐off defined by receiver operating characteristic analysis. Limit of quantification (LoQ) was assessed by a linear model using the coefficient of variation threshold of 25%. After assuring VATP gene amplification, its primer–probe concentrations were best at 100 nM/10 nM, respectively. The cut‐off Cq value for L. infantum kDNA was defined as 35.46 with 100% of sensitivity and specificity. A total of 95% LoD was determined to be of 0.162 parasites while LoQ was 5.858. Our VATP/kDNA multiplex qPCR assay shows that it can be used to evaluate both DNA integrity and determine L. infantum load in L. longipalpis even for low yielded samples, that is, individual midguts.

3 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the effects of larval rearing densities and additional anchoring surface on An. funestus development using a life table approach and found that larval cohorts were reared at four different densities using the same rearing surface area, larval food concentrations and temperature conditions.
Abstract: Optimal rearing conditions, inclusive of larval rearing density, are critical for sustained mosquito productivity. There is limited information on favourable conditions for the larval rearing of Anopheles funestus, the dominant malaria vector in east and southern Africa. This work investigated the effects of larval rearing densities and additional anchoring surface on An. funestus development using a life table approach. Larval cohorts were reared at four different larval densities using the same rearing surface area, larval food concentrations and temperature conditions. Rearing larvae at high densities extended the larval developmental time and reduced adult productivity. Adding an extra larval anchoring surface when rearing larvae at high density resulted in extended larval developmental time, increased larval survivorship and produced bigger adults. These findings improve our understanding of the relationship between larval density and developmental traits in An. funestus and provides baseline information for An. funestus rearing under laboratory conditions.

3 citations


Journal ArticleDOI
TL;DR: In this paper , a comprehensive report on the conservation of protein targets across tick and lice-borne pathogenic Borrelia recurrentis is presented, which encourages experimental evaluation of the potent phytocompounds and similar protocols for investigating other emerging vector-borne diseases.
Abstract: Louse‐borne relapsing fever (LBRF) with high untreated mortality caused by spirochete Borrelia recurrentis is predominantly endemic to Sub‐Saharan Africa and has re‐emerged in parts of Eastern Europe, Asia and Latin America due to population migrations. Despite subtractive evolution of lice‐borne pathogenic Borrelia spp. from tick‐borne species, there has been no comprehensive report on conservation of protein targets across tick and lice‐borne pathogenic Borrelia nor exploration of phytocompounds that are toxic to tick against lice. From the 19 available whole genomes including B. recurrentis, B. burgdorferi, B. hermsii, B. parkeri and B. miyamotoi, conservation of seven drug targets (>80% domain identity) viz. 30 S ribosomal subunit proteins (RSP) S3, S7, S8, S14, S19, penicillin‐binding protein‐2 and 50 S RSP L16 were deciphered through multiple sequence alignments. Twelve phytocompounds (hydroxy‐tyrosol, baicalein, cis‐2‐decanoic acid, morin, oenin, rosemarinic acid, kaempferol, piceatannol, rottlerin, luteolin, fisetin and monolaurin) previously explored against Lyme disease spirochete B. burgdorferi when targeted against LBRF‐causing B. recurrentis protein targets revealed high multi‐target affinity (2%–20% higher than conventional antibiotics) through molecular docking. However, based on high binding affinity against all target proteins, stable coarse‐grained dynamics (fluctuations <1 Å) and safe pharmacological profile, luteolin was prioritized. The study encourages experimental evaluation of the potent phytocompounds and similar protocols for investigating other emerging vector‐borne diseases.

3 citations


Journal ArticleDOI
TL;DR: Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.
Abstract: In Lao People's Democratic Republic, Aedes aegypti (Linnaeus 1762) and Aedes albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases is limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage‐gated sodium channel (vgsc) gene giving rise to pyrethroid resistance are threatening vector control programs. Here, we analysed both Ae. aegypti and Ae. albopictus mosquitoes, which were collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany), for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.

Journal ArticleDOI
TL;DR: DL and DLN have significant lousicidal activities andDLN showed better stability than DL after storage for 50 days, which indicates the mode of action of DL may associate with its effect on the cuticle of the lice body, inhibition of AchE, and increasing oxidative stress in the treated lice.
Abstract: The current study was conducted to investigate the efficacy and stability of D‐limonene (DL) and its nanoemulsion (DLN) against pigeon feather lice (Columbicola columbae) and their mode of action. DL pure form and DLN were prepared and characterized freshly and after storage for 50 days. In vitro bioassay on live lice was conducted with different concentrations of DL, DLN, and deltamethrin (DM). The results revealed significant mortality rates in the DL‐, DLN‐, DM‐treated groups when compared with the control (p < 0.05). The scanning electron micrographs of lice treated with DL and DLN revealed collapsed bodies with destruction in the cuticle of the mouthparts and damaged antennae. The 50 days stored DLN showed stability in their effectiveness when compared with the freshly prepared formulation. DL and DLN caused significant inhibition (p ≤ 0.05) in acetylcholinesterase activity (AchE). Malondialdehyde level (MDA) was significantly increased while glutathione was significantly decreased in DL‐ and DLN‐treated lice. In conclusion, DL and DLN have significant lousicidal activities. DLN showed better stability than DL after storage for 50 days. In addition, the mode of action of DL may associate with its effect on the cuticle of the lice body, inhibition of AchE, and increasing oxidative stress in the treated lice.

Journal ArticleDOI
TL;DR: Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.
Abstract: Aedes‐transmitted arboviruses have spread globally due to the spread of Aedes aegypti and Aedes albopictus. Its distribution is associated with human and physical geography. However, these factors have not been quantified in Cameroon. Therefore, the aim was to develop an Ae. albopictus geo‐referenced database to examine the risk factors associated with the vector distribution in Cameroon. Data on the Ae. albopictus presence and absence were collated and mapped from studies in published scientific literature between 2000 and 2020. Publicly available earth observation data were used to assess human geography, land use and climate risk factors related to the vector distribution. A logistic binomial regression was conducted to identify the significant risk factors associated with Ae. albopictus distribution. In total, 111 data points were collated (presence = 87; absence = 24). Different data collection methods and sites hindered the spatiotemporal analysis. An increase of one wet month in a year increased the odds of Ae. albopictus presence by 5.6 times. One unit of peri‐urban area increased the odds by 1.3 times. Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.

Journal ArticleDOI
TL;DR: The fauna of cave-dwelling sand flies in Brazil is summarized, focusing on their biological behaviour and the occurrence of potential vectors of Leishmania parasites.
Abstract: Brazilian caves, one of the many tourist attractions of the country, may act as a shelter for insects, such as sand flies (Diptera: Psychodidae), natural hosts of various microorganisms including parasites of the genus Leishmania Ross, 1903. In the last decades, with the increasing global need for sustainable development, ecotourism has emerged as one of the major activities in Brazil. However, the constant monitoring in environmentally protected areas is not often carried out, endangering visitors and professionals, especially due to the occurrence of zoonoses. Several sand fly species have already been recorded in Brazilian caves, drawing attention to the possibility of Leishmania transmission at this ecotope. Indeed, this current systematic review summarizes the fauna of cave‐dwelling sand flies in Brazil, focusing on their biological behaviour and the occurrence of potential vectors of Leishmania parasites.

Journal ArticleDOI
TL;DR: It is demonstrated that DNA vaccine of pcDNA3.1-HlLIP can partially protect rabbits against H. longicornis, and it is possible to develop a new candidate antigen against ticks.
Abstract: Haemaphysalis longicornis is an obligate haematophagous ectoparasite, transmitting a variety of pathogens, which brings great damage to human health and animal husbandry development. Lipocalins (LIP) are a family of proteins that transport small hydrophobic molecules and also involve in immune regulation, such as the regulation of cell homeostasis, inhibiting the host's inflammatory response and resisting the contractile responses in host blood vessels. Therefore, it is one of the candidate antigens for vaccines. Based on previous studies, we constructed the recombinant plasmid pcDNA3.1‐HlLIP of LIP homologue from H. longicornis (HlLIP). ELISA results showed that rabbits immunized with pcDNA3.1‐HlLIP produced higher anti‐rHlLIP antibody levels compared with the pcDNA3.1 group, indicating that pcDNA3.1‐HlLIP induced the humoral immune response of host. Adult H. longicornis infestation trial in rabbits demonstrated that the engorgement weight, oviposition and hatchability of H. longicornis fed on rabbits immunized with pcDNA3.1‐HlLIP decreased by 7.07%, 14.30% and 11.70% respectively, compared with that of the pcDNA3.1 group. In brief, DNA vaccine of pcDNA3.1‐HlLIP provided immune protection efficiency of 30% in rabbits. This study demonstrated that pcDNA3.1‐HlLIP can partially protect rabbits against H. longicornis, and it is possible to develop a new candidate antigen against ticks.

Journal ArticleDOI
TL;DR: In this article , the authors characterized the composition and diversity of bacterial communities in the gut of female house flies collected from three different habitats in Kansas: agricultural (dairy farm), urban (business area dumpsters) and mixed (business located between residential and animal agriculture areas).
Abstract: Adult house flies feed and breed in a variety of microbe‐rich habitats and serve as vectors for human and animal pathogens. To better understand their role in harbouring and disseminating bacteria, we characterized the composition and diversity of bacterial communities in the gut of female house flies collected from three different habitats in Kansas: agricultural (dairy farm), urban (business area dumpsters) and mixed (business located between residential and animal agriculture areas). Bacterial community composition and diversity were influenced more by the house flies' habitat than by sampling time. The most abundant taxa were also highly prevalent in the house flies collected from all three habitats, potentially representing a ‘core microbiome’ attributable to the fly's trophic and reproductive associations with substrates and food sources comprised of decaying matter and/or animal waste. Bacterial taxa associated with vertebrate guts/faeces and potential pathogens were highly abundant in agricultural fly microbial communities. Interestingly, taxa of potential pathogens were highly abundant in flies from the mixed and urban sites. House flies harboured diverse bacterial communities influenced by the habitat in which they reside, including potential human and animal pathogens, further bolstering their role in the dissemination of pathogens, and indicating their utility for pathogen surveillance.

Journal ArticleDOI
TL;DR: The density of Borrelia burgdorferi infected Ixodes ricinus nymphs (DIN) was investigated during 2013-2017 across a Lyme disease-endemic landscape in southern England as discussed by the authors .
Abstract: The density of Borrelia burgdorferi‐infected Ixodes ricinus nymphs (DIN) was investigated during 2013–2017 across a Lyme disease‐endemic landscape in southern England. The density of nymphs (DON), nymph infection prevalence (NIP), and DIN varied across five different natural habitats, with the highest DIN in woodland edge and high biodiversity woodlands. DIN was significantly lower in scrub grassland compared to the woodland edge, with low DON and no evidence of infection in ticks in non‐scrub grassland. Over the 5 years, DON, NIP and DIN were comparable within habitats, except in 2014, with NIP varying three‐fold and DIN significantly lower compared to 2015–2017. Borrelia garinii was most common, with bird‐associated Borrelia (B. garinii/valaisiana) accounting for ~70% of all typed sequences. Borrelia burgdorferi sensu stricto was more common than B. afzelii. Borrelia afzelii was more common in scrub grassland than woodland and absent in some years. The possible impact of scrub on grazed grassland, management of ecotonal woodland margins with public access, and the possible role of birds/gamebirds impacting NIP are discussed. Mean NIP was 7.6%, highlighting the potential risk posed by B. burgdorferi in this endemic area. There is a need for continued research to understand its complex ecology and identify strategies for minimizing risk to public health, through habitat/game management and public awareness.

Journal ArticleDOI
TL;DR: This work shows that vector competence for chikungunya virus varied between Ae.
Abstract: The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock‐down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.

Journal ArticleDOI
TL;DR: Juvenile An.
Abstract: Malaria is among the leading causes of death in Uganda, and Anopheles gambiae sensu stricto (s.s.) is the predominant vector. Although current vector control interventions have greatly reduced the malaria burden, the disease persists. New interventions are needed in order to eradicate them. Evaluation of new tools will require the availability of well‐characterized test vector populations. Juvenile An. gambiae s.s. from Kibbuye and Kayonjo‐derived populations were characterized under semi‐field and laboratory conditions, given that various vector traits, including abundance and fitness are dependent on development profiles at this life stage. Ten replicates comprising 30 first instar larvae each were profiled for various life‐history attributes (egg hatching, larval development time, larval survivorship, pupal weight and pupation rate). All parameters were similar for the two sites under laboratory conditions. However, the similarities or differences between field and laboratory development were parameter‐specific. Whereas, larval survivorship and pupal weight were similar across seasons and laboratory in colonies from both sites, in the semi‐field settings, pupation rate and larval survivorship differed between seasons in both sites. In addition, the average larval development time during the wet season was longer than that of the laboratory for both sites. Availability of mirror field sites is important for future tool evaluations.

Journal ArticleDOI
TL;DR: In this article , the authors demonstrated a replication inhibitory effect of Wolbachia-infected Culicoides sonorensis Wirth and Jones W8 cell line on bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV).
Abstract: Culicoides midges are hematophagous insects that transmit arboviruses of veterinary importance. These viruses include bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV). The endosymbiont Wolbachia pipientis Hertig spreads rapidly through insect host populations and has been demonstrated to inhibit viral pathogen transmission in multiple mosquito vectors. Here, we have demonstrated a replication inhibitory effect on BTV and EHDV in a Wolbachia (wAlbB strain)-infected Culicoides sonorensis Wirth and Jones W8 cell line. Viral replication was significantly reduced by day 5 for BTV and by day 2 for EHDV as detected by real-time polymerase chain reaction (RT-qPCR) of the non-structural NS3 gene of both viruses. Evaluation of innate cellular immune responses as a cause of the inhibitory effect showed responses associated with BTV but not with EHDV infection. Wolbachia density also did not play a role in the observed pathogen inhibitory effects, and an alternative hypothesis is suggested. Applications of Wolbachia-mediated pathogen interference to impact disease transmission by Culicoides midges are discussed.

Journal ArticleDOI
TL;DR: Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland.
Abstract: The tick Ixodes ricinus (Ixodida: Ixodidae, Linnaeus) is the main vector of several pathogens including Borrelia burgdorferi s.l. (agent of Lyme borreliosis) and tick‐borne encephalitis virus. Its distribution depends on many factors including suitable habitat, climate and presence of hosts. In this study, we present records of I. ricinus bites on humans, dogs (Canis lupus familiaris; Carnivora: Canidae, L.) and cats (Felis catus; Carnivora: Felidiae, L.) in the United Kingdom (UK) obtained through the Tick Surveillance Scheme between 2013 and 2020. We divided the UK into 20 km x 20 km grids and 9.2% (range 1.2%–30%) of grids had at least one record every year since 2013. Most regions reported a yearly increase in the percentage of grids reporting I. ricinus since 2013 and the highest changes occurred in the South and East England with 5%–6.7% of new grids reporting I. ricinus bites each year in areas that never reported ticks before. Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland. We discuss potential drivers of tick expansion, including reforestation and increase in deer populations.

Journal ArticleDOI
TL;DR: In this paper , the authors constructed the ecological niche models (ENMs) of this understudied vector species and the parasite responsible for Chagas disease (Trypanosoma cruzi), and modelled the ecological niches of both species under current and future climate change projections in 2050 using four Representative Concentration Pathways (RCPs): RCP 2.6, RCP 4.5 and RCP 8.5).
Abstract: Dipetalogaster maxima is a primary vector of Chagas disease in the Cape region of Baja California Sur, Mexico. The geographic distribution of D. maxima is limited to this small region of the Baja California Peninsula in Mexico. Our study aimed to construct the ecological niche models (ENMs) of this understudied vector species and the parasite responsible for Chagas disease (Trypanosoma cruzi). We modelled the ecological niches of both species under current and future climate change projections in 2050 using four Representative Concentration Pathways (RCPs): RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. We also assessed the human population at risk of exposure to D. maxima bites, the hypothesis of ecological niche equivalency and similarity between D. maxima and T. cruzi, and finally the abundance centroid hypothesis. The ENM predicted a higher overlap between both species in the Western and Southern coastal regions of the Baja California Peninsula. The climate change scenarios predicted a Northern shift in the ecological niche of both species. Our findings suggested that the highly tourist destination of Los Cabos is a high‐risk zone for Chagas disease circulation. Overall, the study provides valuable data to vector surveillance and control programs.

Journal ArticleDOI
TL;DR: Tick community composition varied across the ecoregions, and across host species within each region, as well as at the local scale, occurrence and abundance of some tick species might be driven by ecological‐host factors, such as habitat use or predator–prey relationships.
Abstract: We examined tick communities on wild felid hosts in three ecoregions of Mexico. We collected 186 ticks of 7 species from 10 pumas (Puma concolor) and 9 jaguars (Panthera onca). Tick community composition varied across the ecoregions, and across host species within each region. Overall, Ixodes affinis, Amblyomma ovale, and Amblyomma tenellum were the most abundant species; however, only the latter two ticks were distributed across all three ecoregions, while I. affinis, along with Ixodes spinipalpis, Amblyomma inornatum, and Amblyomma parvum were restricted to more limited geographical regions. Ixodes affinis occurred strictly in southern tropical rainforest ecoregions and was significantly more abundant in Selva Lacandona compared with the Yucatán Peninsula. Amblyomma ovale was significantly more common in the tropical dry forest in the Pacific coastal ecoregion. Amblyomma tenellum abundance tended to be higher on jaguars, while I. affinis abundance was higher on pumas. Regional distribution patterns of some tick species (e.g., I. affinis and I. spinipalpis) may be determined by off‐host environmental conditions rather than host factors. In contrast, at the local scale, occurrence and abundance of some tick species (e.g., A. tenellum, A. ovale and Rhipicephalus microplus) might be driven by ecological‐host factors, such as habitat use or predator–prey relationships.

Journal ArticleDOI
TL;DR: Analysis of chemicals left on substrates by two species of blow fly larvae suggests that the (Z)-9-tricosene could regulate larval aggregations on carrion, and does not directly evidence synomones.
Abstract: Chemical signals are widespread in insects, but those resulting in interspecific communication (i.e., synomones) remain understudied. Here, we analysed chemicals left on substrates by two species of blow fly larvae, Lucilia sericata (Meigen) and Calliphora vomitoria (Linneaus) (Diptera: Calliphoridae), which can aggregate together on carrion. Using solid‐phase microextraction and dynamic headspace analysis, we identified six compounds common to both species: the decanoic, tetradecanoic, pentadecanoic, hexadecanoic and octadecanoic acids, and the 2‐ethylhexyl salicylate. We then tested the behavioural effects of the decanoic and pentadecanoic acids using binary‐choice experiments, along with the (Z)‐9‐tricosene, a pheromone found in many arthropods. The time spent by a larva and its average crawling speed were measured in two sides of an arena, where only one contained a compound at 0.25 or 25 μg/μl. No effect was observed when testing the decanoic acid. The pentadecanoic acid only reduced the speed of C. vomitoria larvae at 25 μg/μl. Finally, L. sericata larvae spent less time in the side containing the (Z)‐9‐tricosene at 0.25 μg/μl, whereas C. vomitoria spent more time and crawled faster in this side at 25 μg/μl. Although these results did not directly evidence synomones, they suggest that the (Z)‐9‐tricosene could regulate larval aggregations on carrion.

Journal ArticleDOI
TL;DR: In this article , entomological and parasitological parameters necessary to guide tsetse control in Campo, southern Cameroon were updated and their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools.
Abstract: Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84–3.91], and 2.51, 95% CI [2.49–2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with ‘Tiny Targets’.

Journal ArticleDOI
TL;DR: In this article , the authors compared three static trap designs: (a) Centre for Disease Control (CDC) downdraft UV trap, (b) CDC trap with an incandescent bulb and (c)CDC trap with semiochemical lure consisting of R−(−)−1.3.ol and CO2 (no bulb).
Abstract: Culicoides biting midges (Diptera: Ceratopogonidae) are biting nuisances and arbovirus vectors of both public health and veterinary significance in Trinidad. We compared sampling methods to define the behaviour and bionomics of adult Culicoides populations at a commercial dairy goat farm. Three static trap designs were compared: (a) Centre for Disease Control (CDC) downdraft UV trap; (b) CDC trap with an incandescent bulb and (c) CDC trap with semiochemical lure consisting of R‐(−)‐1‐octen‐3‐ol and CO2 (no bulb). Sweep netting was used to define diel periodicity. A total of 30,701 biting midges were collected using static traps, dominated by female Culicoides furens (>70% of trap collections across all three designs). There was no significant difference in the Margalef's index between the three traps; however, trap designs A and C collected a significantly greater number of individuals than trap B, and trap C gained highest species richness. The greatest species richness and abundance of Culicoides collected by sweep net was observed between 6:00 and 6:15 pm and notable differences in the crepuscular activity pattern of several species were identified. Comparative data on Culicoides species richness, abundance, sex and reproductive status is discussed and can be used to improve surveillance strategies, research designs and risk management.

Journal ArticleDOI
TL;DR: This study indicates that the two Italian populations of Cx.
Abstract: Bluetongue disease (BT), caused by Bluetongue virus (BTV), infects wild and domestic ruminants, causing severe economic damage in the cattle and sheep industry. Proven vectors of BTV are biting midges belonging to the Culicoides genus, but other arthropods are considered potential vectors, such as ticks, mosquitoes, wingless flies, and sand flies. The present study represents the first attempt to evaluate the vectorial capacity of Culex pipiens and Aedes albopictus for BTV. Mosquitoes were artificially fed with blood containing BTV serotype 1. Infection, dissemination and transmission rates were evaluated at 0, 3, 7, 14 and 21 days after an infected blood meal. Viral RNA was only detected up to 3 days post infection in the bodies of both species. This study indicates that the two Italian populations of Cx. pipiens and Ae. albopictus are not susceptible to BTV infection.

Journal ArticleDOI
TL;DR: Exposure to sublethal doses of insecticide may affect biological traits in triatomines and generated morphological modifications that may affect insect survival and flight dispersal, and hence may have evolutionary and epidemiological consequences.
Abstract: Exposure to sublethal doses of insecticide may affect biological traits in triatomines. We investigated the effects of toxicological phenotype (pyrethroid resistance status) and exposure to sublethal doses of deltamethrin on two traits of Triatoma infestans Klug (Heteroptera: Reduviidae) using a phenotypic plasticity experimental design. First‐instar nymphs from 14 and 10 full‐sib families from pyrethroid‐susceptible and pyrethroid‐resistant populations, respectively, were used. For the susceptible population, we treated first instars topically with acetone (control) or deltamethrin (treatment) once. For the resistant population, instars were treated once, twice and three times as first, third or fifth‐instar nymphs, respectively. We measured cuticle thickness, wing size and wing shape of 484 emerging adults, and tested for treatment effects using mixed ANOVA and MANOVA models. Toxicological phenotype, exposure to deltamethrin and full‐sib family exerted significant effects on cuticle thickness, wing size and wing shape. Adult triatomines previously treated with deltamethrin developed significantly thicker cuticles than control triatomines only in the resistant population and significantly bigger wings in both populations. Mean cuticle thickness and wing size increased with increasing exposures to deltamethrin. Exposure to sublethal doses of deltamethrin generated morphological modifications that may affect insect survival and flight dispersal, and hence may have evolutionary and epidemiological consequences.

Journal ArticleDOI
TL;DR: In this paper , a large cage setup with Anopheles coluzzii (Diptera, Culicidae) was used to evaluate the attraction of fermenting molasses to blood-fed mosquitoes.
Abstract: Collecting blood‐fed mosquitoes to monitor pathogen presence or to gather information on the host blood meal is often challenging. Fermenting molasses can be used to produce carbon dioxide to attract host‐seeking mosquitoes, however, earlier work indicated that it may also attract blood‐fed mosquitoes in the field. In the current study, these field results were validated in an experimental setting using a large cage setup with Anopheles coluzzii (Diptera, Culicidae). Blood‐fed mosquitoes were indeed attracted to fermenting molasses with the highest attraction at 72 hours post feeding, which was used for subsequent experiments. Next, it was tested if fermentation of molasses is required for attraction, and whether it acts as an oviposition attractant, increases egg laying, or increases mosquito survival. The compounds that could be responsible for attraction were identified by combined electrophysiology and chemical analyses and formulated into a synthetic blend. Fermenting molasses attracted blood‐fed mosquitoes in the large cage study, while fermenting sugar and non‐fermenting molasses did not. The fecundity of blood‐fed mosquitoes increased after feeding on fermenting molasses, however, compounds emanating from molasses did not trigger oviposition. The synthetic blend attracted blood‐fed mosquitoes and may be used to determine mosquito host selection and for xenomonitoring, as ‘flying syringes’ to detect non‐vector borne pathogens.

Journal ArticleDOI
TL;DR: In this paper , the influence of six blood meals (rabbits, rats, mice, dogs, cats and chickens) on six biological parameters of the biology of T. pallidipennis was evaluated.
Abstract: Chagas disease is one of the most important vector‐borne diseases in Latin America, including Mexico. Triatoma pallidipennis (Stål) (Hemiptera: Reduviidae) is a Mexican triatomine vector commonly associated with different hosts. The influence of six blood meals (rabbits, rats, mice, dogs, cats and chickens) on six biological parameters of the biology of T. pallidipennis was evaluated. A significant difference was found in the period of egg‐to‐adult development between the five mammalian feeds (mean 195 days) and the chicken feed (221 days). The probability of survival was significantly lower in the chicken cohort (0.285). The total number of blood meals to moult from the first instar to the adult stage was the highest in the chicken cohort (10–15). This cohort had the significantly highest rate of females at the end cycle. The mean number of eggs laid per female and the egg eclosion rate were similar among the six food sources. Most results seemed to be influenced by the higher nutritional quality of the mammalian blood compared to the bird's blood and the increased energy expenditure required for the digestion of bird blood. These results clearly show that T. pallidipennis, unlike other triatomine species, has a high reproductive capacity when feeding on different hosts.