scispace - formally typeset
Search or ask a question
JournalISSN: 1355-2546

Rapid Prototyping Journal 

Emerald Publishing Limited
About: Rapid Prototyping Journal is an academic journal published by Emerald Publishing Limited. The journal publishes majorly in the area(s): Ultimate tensile strength & Selective laser sintering. It has an ISSN identifier of 1355-2546. Over the lifetime, 1842 publications have been published receiving 70807 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the properties of FDM parts fabricated by the FDM 1650 were analyzed using a Design of Experiment (DOE) approach, such as raster orientation, air gap, bead width, color and model temperature.
Abstract: Rapid Prototyping (RP) technologies provide the ability to fabricate initial prototypes from various model materials. Stratasys Fused Deposition Modeling (FDM) is a typical RP process that can fabricate prototypes out of ABS plastic. To predict the mechanical behavior of FDM parts, it is critical to understand the material properties of the raw FDM process material, and the effect that FDM build parameters have on anisotropic material properties. This paper characterizes the properties of ABS parts fabricated by the FDM 1650. Using a Design of Experiment (DOE) approach, the process parameters of FDM, such as raster orientation, air gap, bead width, color, and model temperature were examined. Tensile strengths and compressive strengths of directionally fabricated specimens were measured and compared with injection molded FDM ABS P400 material. For the FDM parts made with a 0.003 inch overlap between roads, the typical tensile strength ranged between 65 and 72 percent of the strength of injection molded ABS P400. The compressive strength ranged from 80 to 90 percent of the injection molded FDM ABS. Several build rules for designing FDM parts were formulated based on experimental results.

1,886 citations

Journal ArticleDOI
TL;DR: In this paper, a simple theoretical model is developed to predict residual stress distributions in selective laser sintering (SLS) and selective laser melting (SLM), aiming at a better understanding of this phenomenon.
Abstract: Purpose – This paper presents an investigation into residual stresses in selective laser sintering (SLS) and selective laser melting (SLM), aiming at a better understanding of this phenomenon.Design/methodology/approach – First, the origin of residual stresses is explored and a simple theoretical model is developed to predict residual stress distributions. Next, experimental methods are used to measure the residual stress profiles in a set of test samples produced with different process parameters.Findings – Residual stresses are found to be very large in SLM parts. In general, the residual stress profile consists of two zones of large tensile stresses at the top and bottom of the part, and a large zone of intermediate compressive stress in between. The most important parameters determining the magnitude and shape of the residual stress profiles are the material properties, the sample and substrate height, the laser scanning strategy and the heating conditions.Research limitations/implications – All exper...

1,415 citations

Journal ArticleDOI
TL;DR: In this paper, a classification of SLS/SLM processes was developed, based on the binding mechanism occurring in the process, in contrast with traditional classifications based on processed material or the application.
Abstract: Purpose – This paper provides an overview of the different binding mechanisms in selective laser sintering (SLS) and selective laser melting (SLM), thus improving the understanding of these processes. Design/methodology/approach – A classification of SLS/SLM processes was developed, based on the binding mechanism occurring in the process, in contrast with traditional classifications based on the processed material or the application. A broad range of commercial and experimental SLS/SLM processes – found from recent articles as well as from own experiments – was used to explain the different binding mechanism categories. Findings – SLS/SLM processes can be classified into four main binding mechanism categories, namely “solid state sintering”, “chemically induced binding”, “liquid phase sintering – partial melting” and “full melting”. Most commercial processes can be classified into the latter two categories, which are therefore subdivided. The binding mechanism largely influences the process speed and the resulting part properties. Research limitations/implications – The classification presented is not claimed to be definitive. Moreover some SLM/SLM processes could be classified into more than one category, based on personal interpretation. Originality/value – This paper can be a useful aid in understanding existing SLS/SLM processes. It can also serve as an aid in developing new SLS/SLM processes.

1,062 citations

Journal ArticleDOI
TL;DR: In this article, a systematic review of the literature focusing on process design and mathematical process modeling of FDM and similar extrusion-based additive manufacturing (AM) or rapid prototyping processes is presented.
Abstract: Purpose – The purpose of this paper is to systematically and critically review the literature related to process design and modeling of fused deposition modeling (FDM) and similar extrusion-based additive manufacturing (AM) or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature focusing on process design and mathematical process modeling was carried out. Findings – FDM and similar processes are among the most widely used rapid prototyping processes with growing application in finished part manufacturing. Key elements of the typical processes, including the material feed mechanism, liquefier and print nozzle; the build surface and environment; and approaches to part finishing are described. Approaches to estimating the motor torque and power required to achieve a desired filament feed rate are presented. Models of required heat flux, shear on the melt and pressure drop in the liquefier are reviewed. On leaving the print nozzle, die swelling and bead cooling are ...

1,042 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanisms controlling the bond formation among extruded polymer filaments in the fused deposition modeling (FDM) process and showed that the bonding phenomenon is thermally driven and ultimately determines the integrity and mechanical properties of the resultant prototypes.
Abstract: Purpose – The purpose of this paper is to investigate the mechanisms controlling the bond formation among extruded polymer filaments in the fused deposition modeling (FDM) process. The bonding phenomenon is thermally driven and ultimately determines the integrity and mechanical properties of the resultant prototypes.Design/methodology/approach – The bond quality was assessed through measuring and analyzing changes in the mesostructure and the degree of healing achieved at the interfaces between the adjoining polymer filaments. Experimental measurements of the temperature profiles were carried out for specimens produced under different processing conditions, and the effects on mesostructures and mechanical properties were observed. Parallel to the experimental work, predictions of the degree of bonding achieved during the filament deposition process were made based on the thermal analysis of extruded polymer filaments.Findings – Experimental results showed that the fabrication strategy, the envelope temper...

949 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202365
2022156
2021196
2020144
2019191
2018132