scispace - formally typeset
Search or ask a question
JournalISSN: 0922-6443

Real-time Systems 

Springer Science+Business Media
About: Real-time Systems is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Scheduling (computing) & Dynamic priority scheduling. It has an ISSN identifier of 0922-6443. Over the lifetime, 1091 publications have been published receiving 37738 citations.


Papers
More filters
Journal ArticleDOI
Ron Koymans1
TL;DR: This paper characterize real-time systems by giving a classification of such quantitative temporal properties, and extends the usual models for temporal logic by including a distance function to measure time and analyzes what restrictions should be imposed on such a function.
Abstract: This paper is motivated by the need for a formal specification method for real-time systems. In these systemsquantitative temporal properties play a dominant role. We first characterize real-time systems by giving a classification of such quantitative temporal properties. Next, we extend the usual models for temporal logic by including a distance function to measure time and analyze what restrictions should be imposed on such a function. Then we introduce appropriate temporal operators to reason about such models by turning qualitative temporal operators into (quantitative) metric temporal operators and show how the usual quantitative temporal properties of real-time systems can be expressed in this metric temporal logic. After we illustrate the application of metric temporal logic to real-time systems by several examples, we end this paper with some conclusions.

1,230 citations

Journal ArticleDOI
TL;DR: A new algorithm is presented, the Sporadic Server algorithm, which greatly improves response times for soft deadline a periodic tasks and can guarantee hard deadlines for both periodic and aperiodic tasks.
Abstract: This thesis develops the Sporadic Server (SS) algorithm for scheduling aperiodic tasks in real-time systems. The SS algorithm is an extension of the rate monotonic algorithm which was designed to schedule periodic tasks. This thesis demonstrates that the SS algorithm is able to guarantee deadlines for hard-deadline aperiodic tasks and provide good responsiveness for soft-deadline aperiodic tasks while avoiding the schedulability penalty and implementation complexity of previous aperiodic service algorithms. It is also proven that the aperiodic servers created by the SS algorithm can be treated as equivalently-sized periodic tasks when assessing schedulability. This allows all the scheduling theories developed for the rate monotonic algorithm to be used to schedule aperiodic tasks. For scheduling aperiodic and periodic tasks that share data, this thesis defines the interactions and schedulability impact of using the SS algorithm with the priority inheritance protocols. For scheduling hard-deadline tasks with short deadlines, an extension of the rate monotonic algorithm and analysis is developed. To predict performance of the SS algorithm, this thesis develops models and equations that allow the use of standard queueing theory models to predict the average response time of soft-deadline aperiodic tasks serviced with a high-priority sporadic server. Implementation methods are also developed to support the SS algorithm in Ada and on the Futurebus+.

947 citations

Journal ArticleDOI
TL;DR: It is shown how to extend the Priority Ceiling Protocol to handle: multiunit resources, which subsume binary semaphores and reader-writer locks; dynamic priority schemes, such as earliest-deadline-first (EDF), that use static “preemption levels”; sharing of runtime stack space between jobs.
Abstract: The Priority Ceiling Protocol (PCP) of Sha, Rajkumar and Lehoczky is a policy for locking binary semaphores that bounds priority inversion (i.e., the blocking of a job while a lower priority job executes), and thereby improves schedulability under fixed priority preemptive scheduling. We show how to extend the PCP to handle: multiunit resources, which subsume binary semaphores and reader-writer locks; dynamic priority schemes, such as earliest-deadline-first (EDF), that use static “preemption levels”; sharing of runtime stack space between jobs. These extensions can be applied independently, or together. The Stack Resource Policy (SRP) is a variant of the SRP that incorporates the three extensions mentioned above, plus the conservative assumption that each job may require the use of a shared stack. This avoids unnecessary context switches and allows the SRP to be implemented very simply using a stack. We prove a schedulability result for EDF scheduling with the SRP that is tighter than the one proved previously for EDF with a dynamic version of the PCP. The Minimal SRP (MSRP) is a slightly more complex variant of the SRP, which has similar properties, but imposes less blocking. The MSRP is optimal for stack sharing systems, in the sense that it is the least restrictive policy that strictly bounds priority inversion and prevents deadlock for rate monotone (RM) and earliest-deadline-first (EDF) scheduling.

823 citations

Journal ArticleDOI
TL;DR: This paper discusses and compares three different metrics that can be used for evaluating the performance of schedulability tests, and investigates how the random generation procedure can bias the simulation results of some specific scheduling algorithm.
Abstract: The high computational complexity required for performing an exact schedulability analysis of fixed priority systems has led the research community to investigate new feasibility tests which are less complex than exact tests, but still provide a reasonable performance in terms of acceptance ratio. The performance of a test is typically evaluated by generating a huge number of synthetic task sets and then computing the fraction of those that pass the test with respect to the total number of feasible ones. The resulting ratio, however, depends on the metrics used for evaluating the performance and on the method for generating random task parameters. In particular, an important factor that affects the overall result of the simulation is the probability density function of the random variables used to generate the task set parameters. In this paper we discuss and compare three different metrics that can be used for evaluating the performance of schedulability tests. Then, we investigate how the random generation procedure can bias the simulation results of some specific scheduling algorithm. Finally, we present an efficient method for generating task sets with uniform distribution in a given space, and show how some intuitive solutions typically used for task set generation can bias the simulation results.

805 citations

Journal ArticleDOI
TL;DR: The original schedulability analysis given for CAN messages is flawed and the priority assignment policy, previously claimed to be optimal for CAN, is not in fact optimal and a method of obtaining an optimal priority ordering that is applicable to CAN is cited.
Abstract: Controller Area Network (CAN) is used extensively in automotive applications, with in excess of 400 million CAN enabled microcontrollers manufactured each year. In 1994 schedulability analysis was developed for CAN, showing how worst-case response times of CAN messages could be calculated and hence guarantees provided that message response times would not exceed their deadlines. This seminal research has been cited in over 200 subsequent papers and transferred to industry in the form of commercial CAN schedulability analysis tools. These tools have been used by a large number of major automotive manufacturers in the design of in-vehicle networks for a wide range of cars, millions of which have been manufactured during the last decade. This paper shows that the original schedulability analysis given for CAN messages is flawed. It may provide guarantees for messages that will in fact miss their deadlines in the worst-case. This paper provides revised analysis resolving the problems with the original approach. Further, it highlights that the priority assignment policy, previously claimed to be optimal for CAN, is not in fact optimal and cites a method of obtaining an optimal priority ordering that is applicable to CAN. The paper discusses the possible impact on commercial CAN systems designed and developed using flawed schedulability analysis and makes recommendations for the revision of CAN schedulability analysis tools.

798 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202310
202216
202119
202015
201923
201823