scispace - formally typeset
Search or ask a question

Showing papers in "Robotica in 2023"


Journal ArticleDOI
15 Feb 2023-Robotica
TL;DR: In this article , the main challenges encountered in the biped gait generation and design of various controllers while moving on different terrain conditions such as flat, ascending and descending slopes or stairs, avoiding obstacles/ditches, uneven terrain, and an unknown environment.
Abstract: Abstract Day by day, biped robots’ usage is increasing enormously in all industrial and non-industrial applications due to their ability to move in any unstructured environment compared to wheeled robots. Keeping this in mind, worldwide, many researchers are working on various aspects of biped robots, such as gait generation, dynamic balance margin, and the design of controllers. The main aim of this review article is to discuss the main challenges encountered in the biped gait generation and design of various controllers while moving on different terrain conditions such as flat, ascending and descending slopes or stairs, avoiding obstacles/ditches, uneven terrain, and an unknown environment. As per the authors’ knowledge, no single study has been carried out in one place related to the gait generation and design of controllers for each joint of the biped robot on various terrains. This review will help researchers working in this field better understand the concepts of gait generation, dynamic balance margin, and the design of controllers while moving on various terrains. Moreover, the current article will also cover the different soft computing techniques used to tune the gains of the controllers. In this article, the authors have reviewed a vast compilation of research work on the gait generation of the biped robot on various terrains. Further, the authors have proposed taxonomies on various design issues identified while generating the gait in different aspects. The authors reviewed approximately 296 articles and discovered that all researchers attempted to generate the dynamically balanced biped gait on various terrains.

2 citations


Journal ArticleDOI
18 Apr 2023-Robotica
TL;DR: In this paper , a 3D-Printed Autonomous humaNoid Developed for Open-source Research Applications (PANDORA) is presented, where three joint configurations (hip, knee, and ankle) along with the major three structural parts of the lower body are discussed.
Abstract: Abstract The main contribution of this paper is the design and development of the lower body of PANDORA (3D-Printed Autonomous humaNoid Developed for Open-source Research Applications), a new humanoid robotic platform implementing additive manufacturing techniques. The three joint configurations (hip, knee, and ankle) along with the major three structural parts (pelvis, thigh, and shin) of the lower body are discussed. The use of 3D printing and PLA+ material makes the robot an affordable solution for humanoid robotics research that gives a high power-to-weight ratio by significantly reducing the number of parts, as well as manufacturing and assembly time. The range of motion of the lower body of PANDORA has been investigated and is found to be comparable to a human lower body. Further, finite element analysis has been performed on the major parts of the lower body of PANDORA to check the structural integrity and to avoid catastrophic failures in the robot. The use of in-house developed actuators and robot electronics reduces the overall cost of the robot and makes PANDORA easily accessible to the research communities working in the field of humanoids. Overall, PANDORA has the potential for becoming popular between researchers and designers for investigating applications in the field of humanoid robotics, healthcare, and manufacturing, just to mention a few. The mechanical designs presented in this work are available open source to lower the knowledge barrier in developing and conducting research on bipedal robots.

1 citations


Journal ArticleDOI
12 Jan 2023-Robotica
TL;DR: In this article , a Jacobian-based iterative method was employed to solve the position of the capsule endoscopes (WCE) and an error model was established and experimentally verified for the analysis and prediction of the localization errors caused by inaccurate measurements from the magnetic field sensor.
Abstract: Abstract Wireless capsule endoscopes (WCEs) are pill-sized camera-embedded devices that can provide visualization of the gastrointestinal (GI) tract by capturing and transmitting images to an external receiver. Determination of the exact location of the WCE is crucial for the accurate navigation of the WCE through external guidance, tracking of the GI abnormality, and the treatment of the detected disease. Despite the enormous progress in the real-time tracking of the WCE, a well-calibrated analytical model is still missing for the accurate localization of WCEs by the measurements from different onboard sensing units. In this paper, a well-calibrated analytical model for the magnetic localization of the WCE was established by optimizing the magnetic moment in the magnetic dipole model. The Jacobian-based iterative method was employed to solve the position of the WCE. An error model was established and experimentally verified for the analysis and prediction of the localization errors caused by inaccurate measurements from the magnetic field sensor. The assessment of the real-time localization of the WCE was performed via experimental trials using an external permanent magnet (EPM) mounted on a robotic manipulator and a WCE equipped with a 3-axis magnetic field sensor and an inertial measurement unit (IMU). The localization errors were measured under different translational and rotational motion modes and working spaces. The results showed that the selection of workspace (distance relative to the EPM) could lead to different positioning errors. The proposed magnetic localization method holds great potential for the real-time localization of WCEs when performing complex motions during GI diagnosis.

1 citations


Journal ArticleDOI
10 Feb 2023-Robotica
TL;DR: In this article , a modular artificial muscle system (MAMS) including motor cable artificial muscle and tendon sheath-pulley system (TSPS), which can be installed remotely and transmit muscle tension in narrow paths, is designed.
Abstract: Abstract In an unstructured environment, the arm can perform complicated tasks with rapidity, flexibility, and robustness. It is difficult to configure multiple artificial muscles similar to an arm in the compact space of a robotic arm. When muscle tension is transferred, mechanisms like tendon-sheath/tendon-pulley may be installed in a compact space to develop musculoskeletal robots that are closer to the arm. However, handling variable frictional nonlinearity and elastic cable deformation is necessary for transmission stability. In this study, the modular artificial muscle system (MAMS), including motor cable artificial muscle and tendon sheath–pulley system (TSPS), that can be installed remotely and transmit muscle tension in narrow paths, is designed. The feed-forward multi-layer neural network (FF-MNN) approach is utilized to discuss the relationship between the measurable input tension of TSPS and the unmeasurable output tension and cable elongation. Subsequently, the lightweight musculoskeletal arm (LM-Arm) is built to verify the validity of MAMS. Through trials, the experiments of MAMS after friction compensating and the LM-Arm’s end-point 3D trajectory tracking are investigated. The results show that average errors of the active and passive muscles tension are 3.87 N and 3.51 N, respectively, under conditions of larger load and higher contraction velocity. The average muscle length error of trajectory tracking is 0.00078 m (0.72%). The suggested MAMS may successfully build a musculoskeletal robot that has similar flexibility and morphology to the arm. It can also be utilized to power various pieces of machinery, such as rescue robot, invasive surgical robots, dexterous hands, and wearable exoskeletons.

1 citations


Journal ArticleDOI
13 Jan 2023-Robotica
TL;DR: In this paper , an obstacle avoidance method for the fixed tip pose trajectory of a 7-DOF modular manipulator is proposed based on the idea of redundancy angle discretisation.
Abstract: Abstract This paper, based on the idea of redundancy angle discretisation, proposes an obstacle avoidance method for the fixed tip pose trajectory of a seven degrees-of-freedom (7-DOF) modular manipulator. First, for the case in which a specific redundancy angle is given, the analytical solutions of the redundant manipulator left 6-DOF subchain are found. Then, through the discretisation of the redundancy angle, the concept of the self-motion space of the tip pose is proposed and is extended to the concept of the self-motion space of the trajectory. Based on this discrete space, a path-planning algorithm is proposed to help select the appropriate redundancy angles to obtain the collision-free solution set of the fixed Cartesian trajectory. However, due to the large fluctuation of the obtained path, a path optimisation method based on the path cost is proposed to smooth the path, and the continuous and collision-free solution set of the manipulator tip’s trajectory is obtained. The method proposed in this paper provides a new thought for the problem of collision-free solution set planning for the Cartesian trajectory of a 7-DOF manipulator and it has great application potential in working environments with high accuracy requirements for the trajectory.

1 citations


Journal ArticleDOI
TL;DR: In this paper , a method based on neural networks for intelligently extracting weighting matrices of the optimal controllers' cost function is presented, which works up to 7% optimal in tracking and up to 19% better in angle state error.
Abstract: Abstract In this paper, a method based on neural networks for intelligently extracting weighting matrices of the optimal controllers’ cost function is presented. Despite the optimal and robust performance of controllers with the cost function, adjusting their gains which are the weighting matrices for the system state variables vector and the system inputs vector, is a challenging and time-consuming task that is usually selected by trial and error method for each specific application; and even little changes in the weighting matrices significantly impact problem-solving and system optimization. Therefore, it is necessary to select these gains automatically to improve controller performance and delete human energy to find the best gains. As a linear controller, linear quadratic regulator, and as a nonlinear controller, nonlinear model predictive control have been employed with trained networks to track the path of a wheeled mobile robot. The simulation and experimental results have been extracted and compared to validate the proposed method. These results have been demonstrated that the intelligent controller’s operation has lower error than the conventional method, which works up to 7% optimal in tracking and up to 19% better in angle state error; furthermore, as the most important aim, the required time and effort to find the weighting matrices in various situations has been omitted.

1 citations


Journal ArticleDOI
F. Paul1
06 Jan 2023-Robotica
TL;DR: In this article , a swarm of quadrotor UAVs is herding anti-aircraft land vehicles (AALV) that actively oppose the swarm's objectives by potentially taking them down.
Abstract: Abstract The present paper aims to design and simulate an adversarial strategy where a swarm of quadrotor UAVs is herding anti-aircraft land vehicles (AALV) that actively oppose the swarm’s objective by potentially taking them down. The main strategy is to block the AALVs’ line of sight to their goal zone (AALVs’ objective), shifting its trajectory so it reaches a kill zone instead (UAVs’ objective). The counter-swarm strategy performed by the AALVs consists of taking down the closest aerial units to the goal zone. As a result, a consensus algorithm is executed by the UAVs in order to assess the communication network and re-group. Consensus is based on the propagation of local observations that converge into a global agreement on a communication graph. Re-grouping is done via positioning around the kill zone vector or preferring an anti-clockwise formation to better close gaps. The adversarial strategy was tested in an empty arena and urban setting, the latter making use of a path-planning procedure that re-routes the AALV trajectory based on its current destination. Simulation results show a maximum UAV mission success rate converging to roughly 80% in the empty arena. When targeted elimination procedures are executed, UAV mission performance drops 5%, making no distinction between re-grouping strategies in the empty arena. The urban setting shows lower performance due to navigation complexity but favors the decision to re-group based on a formation that close gaps rather than positioning around the kill zone vector.

1 citations


Journal ArticleDOI
06 Jan 2023-Robotica
TL;DR: In this paper , a two-point boundary value problem (TPBVP) is solved using sensitivity derivatives and indirect shooting methods, and the optimal control inputs and states are updated based on the neighboring extremal (NE) method.
Abstract: Abstract The issue of implementing nonlinear model predictive control (NMPC) on mechanical systems evolving on special orthogonal group (SO(3)) is taken into consideration in the first place. Necessary conditions of optimality are extracted based on Lie group variational integrators, leading to a two-point boundary value problem (TPBVP) which is solved using sensitivity derivatives and indirect shooting methods. Fast Newton-like methods referred to as fast solvers which are commonly used to solve the TPBVP are established based on the repetition of a nonlinear process. The numerical schemes employed to alleviate the computation burden consist of eliminating some constraint-related but non-essential terms in the trend of sensitivity derivatives calculation and for solving the TPBVP equations. As another claim, assuming that a first attempt to resolve the NMPC problem is accessible, the problem subjected to some changes in its initial conditions (due to some re-planning schemes) can be resolved cost-effectively based on it. Instead of solving the whole optimization process from the scratch, the optimal control inputs and states of the system are updated based on the neighboring extremal (NE) method. For this purpose, two approaches are considered: applying NE method on the first solution that leads to a neighboring optimal solution, or assisting this latter by updating the NMPC-related optimization using exact TPBVP equations at some predefined intermediate steps. It is shown through an example that the first method is not accurate enough due to error accumulations. In contrast, the second method preserves the accuracy while reducing the computation time significantly.

1 citations


Journal ArticleDOI
10 Mar 2023-Robotica
TL;DR: In this article , the analytical expressions of a motion profile characterized by elliptic jerk were discussed, and the features of these motion profiles were evaluated in a dynamic case study, assessing the vibrations induced to a second-order linear system with different levels of damping.
Abstract: Abstract The paper discusses the analytical expressions of a motion profile characterized by elliptic jerk. This motion profile is obtained through a kinematic approach, defining the jerk profile and then obtaining acceleration, velocity, and displacement laws by successive integrations. A dimensionless formulation is adopted for the sake of generality. The main characteristics of the profile are analyzed, outlining the relationships between the profile parameters. A kinematic comparison with other motion laws is carried out: trapezoidal velocity, trapezoidal acceleration, cycloidal, sinusoidal jerk, and modified sinusoidal jerk. Then, the features of these motion profiles are evaluated in a dynamic case study, assessing the vibrations induced to a second-order linear system with different levels of damping. The results show that the proposed motion law provides a good compromise between different performance indexes (settling time, maximum absolute values of velocity and acceleration).

1 citations


Journal ArticleDOI
Helen C. Lai1
18 Apr 2023-Robotica
TL;DR: In this article , a 3D-Printed Autonomous humaNoid Developed for Open-source Research Applications (PANDORA) is presented, where three joint configurations (hip, knee, and ankle) along with the major three structural parts of the lower body are discussed.
Abstract: Abstract The main contribution of this paper is the design and development of the lower body of PANDORA (3D-Printed Autonomous humaNoid Developed for Open-source Research Applications), a new humanoid robotic platform implementing additive manufacturing techniques. The three joint configurations (hip, knee, and ankle) along with the major three structural parts (pelvis, thigh, and shin) of the lower body are discussed. The use of 3D printing and PLA+ material makes the robot an affordable solution for humanoid robotics research that gives a high power-to-weight ratio by significantly reducing the number of parts, as well as manufacturing and assembly time. The range of motion of the lower body of PANDORA has been investigated and is found to be comparable to a human lower body. Further, finite element analysis has been performed on the major parts of the lower body of PANDORA to check the structural integrity and to avoid catastrophic failures in the robot. The use of in-house developed actuators and robot electronics reduces the overall cost of the robot and makes PANDORA easily accessible to the research communities working in the field of humanoids. Overall, PANDORA has the potential for becoming popular between researchers and designers for investigating applications in the field of humanoid robotics, healthcare, and manufacturing, just to mention a few. The mechanical designs presented in this work are available open source to lower the knowledge barrier in developing and conducting research on bipedal robots.

1 citations


Journal ArticleDOI
20 Mar 2023-Robotica
TL;DR: In this article , a method to balance the constant forces in arbitrary directions on a planar serial manipulator is developed with the use of springs, based on the representation of energy, spring energy is the function of springs' attachment points.
Abstract: Abstract With the use of springs, a method to balance the constant forces in arbitrary directions on a planar serial manipulator is developed in this study. Gravity balancing has been discussed a lot in the past. However, manipulators usually bear forces from various directions rather than only a fixed one as gravity. For instance, an industrial manipulator would bear forces from everywhere during the working process. Therefore, a method to balance these forces in arbitrary directions with springs is proposed. Based on the representation of energy, spring energy is the function of springs’ attachment points. Two spring systems with different attachment angles are needed to balance respectively forces in arbitrary directions and gravity. The spring installations of the above systems on 3-DoF manipulators are proposed. Finally, a resistive force-balanced manipulator with/without gravity balance in the grinding process is shown. In sum, this paper for the first time develops the balancing method for forces in arbitrary directions, expanding the spring balance theory to a broader application.

Journal ArticleDOI
15 Feb 2023-Robotica
TL;DR: In this article , the main challenges encountered in the biped gait generation and design of various controllers while moving on different terrain conditions such as flat, ascending and descending slopes or stairs, avoiding obstacles/ditches, uneven terrain, and an unknown environment.
Abstract: Abstract Day by day, biped robots’ usage is increasing enormously in all industrial and non-industrial applications due to their ability to move in any unstructured environment compared to wheeled robots. Keeping this in mind, worldwide, many researchers are working on various aspects of biped robots, such as gait generation, dynamic balance margin, and the design of controllers. The main aim of this review article is to discuss the main challenges encountered in the biped gait generation and design of various controllers while moving on different terrain conditions such as flat, ascending and descending slopes or stairs, avoiding obstacles/ditches, uneven terrain, and an unknown environment. As per the authors’ knowledge, no single study has been carried out in one place related to the gait generation and design of controllers for each joint of the biped robot on various terrains. This review will help researchers working in this field better understand the concepts of gait generation, dynamic balance margin, and the design of controllers while moving on various terrains. Moreover, the current article will also cover the different soft computing techniques used to tune the gains of the controllers. In this article, the authors have reviewed a vast compilation of research work on the gait generation of the biped robot on various terrains. Further, the authors have proposed taxonomies on various design issues identified while generating the gait in different aspects. The authors reviewed approximately 296 articles and discovered that all researchers attempted to generate the dynamically balanced biped gait on various terrains.

Journal ArticleDOI
05 Apr 2023-Robotica
TL;DR: In this paper , a systematic discussion of the research status of frog-inspired robots according to the locomotion mode is presented, and the characteristics of the robots are analyzed from the aspects of design concept, structural characteristics, driving method, and motion performance.
Abstract: Abstract The frog-inspired robots with amphibious locomotion ability have greatest application prospects and practical value in the fields of resource exploration and environmental reconnaissance. Although frog-inspired robots have been of interest over many years, research on frog-inspired amphibious robots is still in its infancy. Since the locomotion mechanism is the basis for the research of frog-inspired amphibious robots, the research methods of the single motion mechanism of frogs are firstly inductive analyzed, and a reference scheme is proposed to inspire the research on the amphibious motion mechanism. Then, we collect and introduce a systematic discussion of the research status of frog-inspired robots according to the locomotion mode. The characteristics of the robots are analyzed from the aspects of design concept, structural characteristics, driving method, and motion performance. Finally, the technical challenges faced by the research on the frog-inspired robots are analyzed, and the development trend is predicted. The authors hope that this study can provide an informative reference for future research in the direction of frog-inspired amphibious robot.

Journal ArticleDOI
17 Apr 2023-Robotica
TL;DR: In this article , a quadruped locomotion manipulation system (LMS) named HITPhanT is presented, which consists of a four-legged locomotion platform and a six-degree-of-freedom manipulation arm.
Abstract: Abstract Flexibility is one of the most significant advantages of legged robots in unstructured environments. However, quadruped robots cannot interact with environments to complete some manipulation tasks. One effective way is to load a manipulation arm. In this paper, we exhibit a quadruped locomotion manipulation system (LMS) named HITPhanT. This system comprises a quadruped locomotion platform and a six-degree-of-freedom manipulation arm. Besides, when the LMS moves to a designated position for operation, it is necessary to constrain the foot contact points to avoid sliding. Therefore, the foot contact point is regarded as a spherical hinge. So the locomotion platform can be considered as a parallel mechanism. A hybrid kinematics model is established by considering the serial robotic arms connecting this parallel mechanism. Besides, the trajectory planning method, which improves the system’s manipulability in evaluating the system balance, is also proposed. Finally, corresponding experiments verify the overall system’s stabilization and algorithm’s effectiveness.

DOI
14 Feb 2023-Robotica
TL;DR: In this article , a pneumatic self-repairing soft actuator is presented, which consists of a driving element, a heating element, and a repairing element, with a finite element analysis and experiment results show that after repairing, the bending angle can reach 108.2° and the bending force can reach 21.85 N.
Abstract: Abstract This paper presents a study on the design and modeling of a novel pneumatic self-repairing soft actuator. The self-repairing soft actuator is composed of driving element, heating element, and repairing element. The driving element completes the deformation of the self-repairing soft actuator. The heating element and the repairing element complete the self-repairing function of the self-repairing soft actuator. A model used to optimize the structure is established, and the structure of the self-repairing soft actuator is determined through finite element analysis and experiment. The self-repairing time model of the soft actuator is established. The influences of different factors on the self-repairing effect and the self-repairing time are analyzed. The self-repairing scheme of the soft actuator is determined. Experiments show that the shortest time for the self-repairing soft actuator to complete the self-repairing process is 83 min. When the self-repairing soft actuator works normally, the bending angle can reach 129.8° and the bending force can reach 24.96 N. After repairing, the bending angle can reach 108.2°, and the bending force can reach 21.85 N. The repaired soft actuator can complete normal locomotion.

Journal ArticleDOI
06 Feb 2023-Robotica
TL;DR: In this article , an adversarial learning framework is proposed for emotional gait dataset augmentation, with which a two-stage model can be trained to generate a number of synthetic emotional samples by separating identity and emotion representations from gait trajectories.
Abstract: Abstract Human-centered intelligent human–robot interaction can transcend the traditional keyboard and mouse and have the capacity to understand human communicative intentions by actively mining implicit human clues (e.g., identity information and emotional information) to meet individuals’ needs. Gait is a unique biometric feature that can provide reliable information to recognize emotions even when viewed from a distance. However, the insufficient amount and diversity of training data annotated with emotions severely hinder the application of gait emotion recognition. In this paper, we propose an adversarial learning framework for emotional gait dataset augmentation, with which a two-stage model can be trained to generate a number of synthetic emotional samples by separating identity and emotion representations from gait trajectories. To our knowledge, this is the first work to realize the mutual transformation between natural gait and emotional gait. Experimental results reveal that the synthetic gait samples generated by the proposed networks are rich in emotional information. As a result, the emotion classifier trained on the augmented dataset is competitive with state-of-the-art gait emotion recognition works.

Journal ArticleDOI
22 May 2023-Robotica
TL;DR: In this article , a passive damper mechanism is proposed to negate the inertia effects while countering the static inaccuracies in the parallel mechanism, and a complete mathematical model for the balancing mechanism has been developed to study its impact on the dynamics of the entire structure.
Abstract: As a heavy load is applied to the parallel manipulators, it causes inaccuracies while positioning the end-effector or unbalanced dynamic forces in the legs. Various load-balancing techniques overcome this. However, the disadvantage of most load-balancing mechanisms is that they add inertia to the assembly and decrease the speed of motion. This article studies a new load-balancing method (a passive damper mechanism). The passive balancing mechanism is proposed to negate the inertia effects while countering the static inaccuracies in the parallel mechanism. This is verified by the structural analysis of the mechanism. The impact of the damper element on the dynamics of the mechanism is unknown. Hence, a complete mathematical model for the balancing mechanism has been developed to study its impact on the dynamics of the entire structure. Laplace transformations characterize the system response. The inclusion of a passive damper in a 3-prismatic-prismatic-revolute-spherical system was examined and found to be stable and critically damped. Such a passive damper was envisaged to facilitate additional force transmission for the actuators, and the DC gain from the system response validates the torque support for the actuators.

Journal ArticleDOI
15 May 2023-Robotica
TL;DR: In this paper , a three-groove kinematic coupling design is proposed to increase the precision of workpiece placement in a robotized laser-cutting machine, and an analytical approach is provided for calculating stresses and deflections at the locations where balls and grooves make contact, and it is then utilized to calculate positioning errors caused by the mechanical structure's elastic deformation under various loading conditions.
Abstract: Devices known as kinematic couplings offer accurate, repeatable, and stiff connections between two parts. They are characterized by point contacts and enable great repeatability with errors less than 1 micron, in contrast to conventional coupling systems like alignment pins or those based on elastic deformation. In this study, a robotized laser-cutting machine is equipped with a three-groove kinematic coupling design to increase the precision of workpiece placement. Given the application’s requirements, a preliminary design of the coupling is defined. An analytical approach is provided for calculating stresses and deflections at the locations where balls and grooves make contact, and it is then utilized to calculate positioning errors caused by the mechanical structure’s elastic deformation under various loading conditions. The outcomes of the simulations are finally discussed and highlight the efficacy of the solution tested.

DOI
17 Mar 2023-Robotica
TL;DR: In this paper , a force tracking smoothing adaptive admittance controller is proposed that grants precise contact forces (performance necessary for many critical interaction tasks such as polishing) for unknown interaction environments (e.g., leather or thin and soft materials).
Abstract: Abstract In this research, a force tracking smoothing adaptive admittance controller is proposed that grants precise contact forces (performance necessary for many critical interaction tasks such as polishing) for unknown interaction environments (e.g., leather or thin and soft materials). First, an online indirect adaptive update strategy is proposed for generating the reference trajectory required by the desired tracking force, considering the uncertainty of the interaction. The sensor noise amplitude is environment dynamics and the necessity condition for traditional admittance controller to achieve ideal steady-state force tracking. Then, a pre-PD controller is introduced to increase the parameter convergence rate while ensuring the steady-state force tracking accuracy and enhancing the robustness of the system. The robustness boundary is also analyzed to provide assurance for the stability of the system. Finally, we verify the effectiveness of the proposed method in simulations. Simultaneously, an experiment is conducted on the AUBO-i5 serial collaborative robot, and the experimental results proved the excellent comprehensive performance of the control framework.

Journal ArticleDOI
11 Jan 2023-Robotica
TL;DR: In this article , the authors present an abstract for this paper and a preview of a full PDF is available via the ‘Save PDF’ action button in order to access the full abstract.
Abstract: An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Journal ArticleDOI
25 Apr 2023-Robotica
TL;DR: In this paper , a nonlinear optimal control approach is proposed for the dynamic model of the 4-degrees of freedom (DOF) Selective compliance articulated robot arms (SCARA) robotic manipulators find wide use in industry.
Abstract: Abstract Selective compliance articulated robot arms (SCARA) robotic manipulators find wide use in industry. A nonlinear optimal control approach is proposed for the dynamic model of the 4-degrees of freedom (DOF) SCARA robotic manipulator. The dynamic model of the SCARA robot undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the system, a stabilizing optimal (H-infinity) feedback controller is designed. To compute the controller’s feedback gains, an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed control method is advantageous because: (i) unlike the popular computed torque method for robotic manipulators, it is characterized by optimality and is also applicable when the number of control inputs is not equal to the robot’s number of DOFs and (ii) it achieves fast and accurate tracking of reference setpoints under minimal energy consumption by the robot’s actuators. The nonlinear optimal controller for the 4-DOF SCARA robot is finally compared against a flatness-based controller implemented in successive loops.

Journal ArticleDOI
04 May 2023-Robotica
TL;DR: In this paper , the analytical expression of driving force is used to quickly plan the kinematic trajectory of parallel mechanism for automatic drilling and riveting for aircraft assembly, which can be used for driving force analysis of parallel posture alignment mechanism in the field of aircraft assembly.
Abstract: The analytical expression of driving force is helpful to quickly plan the kinematic trajectory of parallel mechanism for automatic drilling and riveting. For parallel posture alignment mechanism, because of its closed-loop characteristics, the inverse dynamic solution is more complex, especially for parallel bracket with actuation redundancy. Considering that the telescopic rods are actually flexible parts, the dynamic analytical modeling is carried out with deformation supplementary equation. Taking the force at the spherical joint as the intermediate variable and the driving force of each active prismatic pair are analytically analyzed by vector cross-product. The modeling was verified by experiment. Compared with previous research methods, the analytical method proposed improves the solution accuracy of driving force slightly and reduces the driving force solution time by 56.28%, which is high efficiency. The maximum error percentage is 1.61%, and the experimental results show that the method of inverse dynamics modeling is practical. This paper can be used for driving force analysis of parallel posture alignment mechanism based on positioner in the field of aircraft assembly.

Journal ArticleDOI
15 Feb 2023-Robotica
TL;DR: In this paper , the effect of changing key parameters on the grasping performance of the Festo soft gripper was explored. But the authors focused on the effects of changing the internal structure of the gripper.
Abstract: Abstract Fin Ray soft grippers, as a notable passive compliant structures, can be easily actuated by external devices to adapt their shape to conform to a grasped object. Their unique ability is aided by their V-shaped structure and morphable material utilized by the Fin Ray finger. Thus, when the internal structure changes, the adaptability and grasping abilities also change. However, related works focus on the effects of changing key parameters on the grasping performance based on the Festo structure, and few works have explored the effects of changing the internal structure. To close the research gap, four different Fin Ray structures are presented in this article, and a parameter determination process was carried out by maximizing their adaptability by investigating the key parameters of each structure through finite element analysis. Then, the force responses of four selected Fin Ray structures are analyzed and experimentally validated. The results show that the No Internal Filling structure obtained by omitting the crossbeams is ideal for grasping delicate targets with the best adaptability and the minimum resultant force. The cross structure attained by adding vertical beams connected to crossbeams decreases the adaptability of the Fin Ray finger but significantly increases the contact force. The unsymmetric design of the branched structure significantly enhances the final contact force while improving the passive adaptation to objects. Thus, the application of the Fin Ray finger ranges from adaptive delicate grasping tasks to high-force manipulation tasks.

Journal ArticleDOI
Rahul Ray1
09 Jan 2023-Robotica
TL;DR: In this paper , a robotic brace for treating scoliosis is presented, which is composed of three specific rings adapted to the patient's torso and can be movable through a Stewart-Gough platform-type mechanism.
Abstract: Abstract This paper’s content focuses on designing and prototyping a robotic brace dedicated to treating scoliosis. Scoliosis is an abnormal spinal curvature affecting 1–3% of children and constitutes a major therapeutic problem. In moderate cases of deformity, passive brace treatment is performed. However, this approach can lead to important patient discomfort. So, we propose a robotic solution providing greater mobility and the possibility of adapting the procedure to each patient. The robotic brace we built and tested is composed of three specific rings adapted to the patient’s torso. Each independent module of two consecutive rings is movable through a Stewart–Gough platform-type mechanism. As the robotic brace is lightweight, it brings better portability and improves the patient’s comfort. The first part of the paper shows the state of the art of bracing techniques: from passive to active orthoses. Next, the mechatronics of the device is detailed, and the robot’s kinematic models are developed. The motion control principle is given. In the last part, motion tests were administered with a healthy human to validate the brace architecture choice and its position and motion control strategies.

Journal ArticleDOI
13 Mar 2023-Robotica
TL;DR: In this article , a second-order cone programming (SOCP) approach is proposed to solve the problem of time-optimal path following in joint space, where the path parameter is replaced by the arc length.
Abstract: Abstract The time-optimal path following (OPF) problem is to find a time evolution along a prescribed path in task space with shortest time duration. Numerical solution algorithms rely on an algorithm-specific (usually equidistant) sampling of the path parameter. This does not account for the dynamics in joint space, that is, the actual motion of the robot, however. Moreover, a well-known problem is that large joint velocities are obtained when approaching singularities, even for slow task space motions. This can be avoided by a sampling in joint space, where the path parameter is replaced by the arc length. Such discretization in task space leads to an adaptive refinement according to the nonlinear forward kinematics and guarantees bounded joint velocities. The adaptive refinement is also beneficial for the numerical solution of the problem. It is shown that this yields trajectories with improved continuity compared to an equidistant sampling. The OPF is reformulated as a second-order cone programming and solved numerically. The approach is demonstrated for a 6-DOF industrial robot following various paths in task space.

Journal ArticleDOI
06 Jul 2023-Robotica
TL;DR: In this paper , an auxiliary dynamic compensator is introduced to correct the control deviation caused by input saturation, which guarantees that the formation tracking error can asymptotically converge to an arbitrarily small neighborhood around zero in finite time.
Abstract: This paper explores finite-time formation control of multi-agent systems (MASs) with high-order nonaffine nonlinear dynamics and saturated input. Based on active disturbance rejection control theory, extended state observer is employed to identify unknown nonaffine nonlinear functions in MASs. The proposed control law consisting of backstepping control, tracking differentiator, and finite-time performance function is adopted for MASs to achieve the desired formation while reaching performance requirements. An auxiliary dynamic compensator is introduced to correct the control deviation caused by input saturation. Lyapunov stability theory is utilized to analyze the stability of the closed-loop system, which guarantees that the formation tracking error can asymptotically converge to an arbitrarily small neighborhood around zero in finite time. Finally, the simulation results show that compared to the adaptive, cooperative learning, and virtual structure methods, the proposed control algorithm has stronger tracking ability and faster setting time (1.8 s) under the influence of nonaffine nonlinear uncertainties. The integral square error for the formation control strategy in this paper is 0.16, which is much smaller than the abovementioned methods and is therefore provided to manifest the validity and feasibility of the proposed control strategy.

Journal ArticleDOI
19 Jun 2023-Robotica
TL;DR: In this article , a calibration method that is not dependent on any particular distortion model, capable of correcting plane position and orientation identified by any algorithm, provided that the identification error is biased.
Abstract: Stereo vision allows machines to perceive their surroundings, with plane identification serving as a crucial aspect of perception. The accuracy of identification constrains the applicability of stereo systems. Some stereo vision cameras are cost-effective, compact, and user-friendly, resulting in widespread use in engineering applications. However, identification errors limit their effectiveness in quantitative scenarios. While certain calibration methods enhance identification accuracy using camera distortion models, they rely on specific models tailored to a camera’s unique structure. This article presents a calibration method that is not dependent on any particular distortion model, capable of correcting plane position and orientation identified by any algorithm, provided that the identification error is biased. A high-precision mechanical calibration platform is designed to acquire accurate calibration data while using the same detected material in real measurement scenarios. Experimental comparisons confirm the efficacy of plane pose correction on PCL-RANSAC, with the average relative error of distance reduced by 5.4 times and the average absolute error of angle decreasing by 41.2%.

Journal ArticleDOI
03 Mar 2023-Robotica
TL;DR: In this article , an autonomous, sequential assessment algorithm based on deep learning, a multi-object detection method, and several sequential If-Then conditional statements have been developed to monitor each step of a surgeon's performance.
Abstract: Abstract In laparoscopic surgery, surgeons should develop several manual laparoscopic skills before carrying out real operative procedures using a low-cost box trainer. The Fundamentals of Laparoscopic Surgery (FLS) program was developed as a program to assess fundamental knowledge and surgical skills, required for basic laparoscopic surgery. The peg transfer task is a hands-on exam in the FLS program that assists a trainee to understand the relative minimum amount of grasping force necessary to move the pegs from one place to another place without dropping them. In this paper, an autonomous, sequential assessment algorithm based on deep learning, a multi-object detection method, and, several sequential If-Then conditional statements have been developed to monitor each step of a surgeon’s performance. Images from three different cameras are used to assess whether the surgeon executes the peg transfer task correctly and to display a notification on any errors on the monitor immediately. This algorithm improves the performance of a laparoscopic box-trainer system using top, side, and front cameras and removes the need for any human monitoring during a peg transfer task. The developed algorithm can detect each object and its status during a peg transfer task and notifies the resident about the correct or failed outcome. In addition, this system can correctly determine the peg transfer execution time, and the move, carry, and dropped states for each object by the top, side, and front-mounted cameras. Based on the experimental results, the proposed surgical skill assessment system can identify each object at a high score of fidelity, and the train-validation total loss for the single-shot detector (SSD) ResNet50 v1 was about 0.05. Also, the mean average precision (mAP) and Intersection over Union (IoU) of this detection system were 0.741, and 0.75, respectively. This project is a collaborative research effort between the Department of Electrical and Computer Engineering and the Department of Surgery, at Western Michigan University.

Journal ArticleDOI
08 Mar 2023-Robotica
TL;DR: In this paper , the authors present an abstract for this paper and a preview of a full PDF is available via the ‘Save PDF’ action button in order to access the full abstract.
Abstract: An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Journal ArticleDOI
16 May 2023-Robotica
TL;DR: In this article , a method for deriving a highly dynamic trajectory compliant with the system dynamics by means of solving an optimal control problem (OCP) using multiple shooting is presented.
Abstract: Abstract A robotic system constructed as a wheeled inverted pendulum (WIP) serves as an impressive demonstrator, since this kind of system is inherently nonlinear, unstable, and nonminimum phase. These properties may pose several difficulties, when it comes to control and trajectory planning. This paper shows a method for deriving a highly dynamic trajectory compliant with the system dynamics by means of solving an optimal control problem (OCP) using multiple shooting. The assumed task includes that the WIP should pass a height-restricting barrier. This can be achieved by leaning back or forth, in order to reduce the overall height of the WIP. The constraints inherent to the definition of this trajectory are nonconvex due to the shape of the robot. The constraint functions have a local minimum in an infeasible region. This can cause problems when the initial guess is within this infeasible region. To overcome this, a multistage approach is proposed for this special OCP to evade the infeasible local minimum. After solving four stages of subsequent optimization problems, the optimal trajectory is obtained and can be used as feedforward for the real system.