scispace - formally typeset
Search or ask a question

Showing papers in "The Astronomy and Astrophysics Review in 2006"


Journal ArticleDOI
TL;DR: The electron-cyclotron maser is a process that generates coherent radiation from plasma as mentioned in this paper, and it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas.
Abstract: The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.

358 citations


Journal ArticleDOI
TL;DR: The first observations of ultraviolet spectral line profiles and intensities from the extended solar corona (i.e., more than 1.5 solar radii from Sun-center) were obtained on 13 April 1979 when a rocket-borne ultraviolet coronagraph spectrometer of the Harvard-Smithsonian Center for Astrophysics made direct measurements of proton kinetic temperatures, and obtained upper limits on outflow velocities in a quiet coronal region and a polar coronal hole.
Abstract: The first observations of ultraviolet spectral line profiles and intensities from the extended solar corona (i.e., more than 1.5 solar radii from Sun-center) were obtained on 13 April 1979 when a rocket-borne ultraviolet coronagraph spectrometer of the Harvard-Smithsonian Center for Astrophysics made direct measurements of proton kinetic temperatures, and obtained upper limits on outflow velocities in a quiet coronal region and a polar coronal hole. Following those observations, ultraviolet coronagraphic spectroscopy has expanded to include observations of over 60 spectral lines in coronal holes, streamers, coronal jets, and solar flare/coronal mass ejection (CME) events. Spectroscopic diagnostic techniques have been developed to determine proton, electron and ion kinetic temperatures and velocity distributions, proton and ion bulk flow speeds and chemical abundances. The observations have been made during three sounding rocket flights, four Shuttle deployed and retrieved Spartan 201 flights, and the Solar and Heliospheric Observatory (SOHO) mission. Ultraviolet spectroscopy of the extended solar corona has led to fundamentally new views of the acceleration regions of the solar wind and CMEs. Observations with the Ultraviolet Coronagraph Spectrometer (UVCS) on SOHO revealed surprisingly large temperatures, outflow speeds, and velocity distribution anisotropies in coronal holes, especially for minor ions. Those measurements have guided theorists to discard some candidate physical processes of solar wind acceleration and to increase and expand investigations of ion cyclotron resonance and related processes. Analyses of UVCS observations of CME plasma properties and the evolution of CMEs have provided the following: temperatures, inflow velocities and derived values of resistivity and reconnection rates in CME current sheets, compression ratios and extremely high ion temperatures behind CME shocks, and three dimensional flow velocities and magnetic field chirality in CMEs. Ultraviolet spectroscopy has been used to determine the thermal energy content of CMEs allowing the total energy budget to be known for the first time. Such spectroscopic observations are capable of providing detailed empirical descriptions of solar energetic particle (SEP) source regions that allow theoretical models of SEP acceleration to be tailored to specific events, thereby enabling in situ measurements of freshly emitted SEPs to be used for testing and guiding the evolution of SEP acceleration theory. Here we review the history of ultraviolet coronagraph spectroscopy, summarize the physics of spectral line formation in the extended corona, describe the spectroscopic diagnostic techniques, review the advances in our understanding of solar wind source regions and flare/CME events provided by ultraviolet spectroscopy and discuss the scientific potential of next generation ultraviolet coronagraph spectrometers.

205 citations


Journal ArticleDOI
TL;DR: In this article, the authors review the present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.
Abstract: Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.

77 citations


Journal ArticleDOI
TL;DR: In this paper, a review describes advances in radiative transfer theory since about 1985 and emphasizes modern methods for the numerical solution of the transfer equation for spatially multidimensional problems, for both unpolarized and polarized radiation.
Abstract: This review describes advances in radiative transfer theory since about 1985. We stress fundamental aspects and emphasize modern methods for the numerical solution of the transfer equation for spatially multidimensional problems, for both unpolarized and polarized radiation. We restrict the discussion to two-level atoms with noninverted populations for given temperature, density and velocity fields.

14 citations