scispace - formally typeset
Search or ask a question
JournalISSN: 0931-1890

Trees-structure and Function 

Springer Science+Business Media
About: Trees-structure and Function is an academic journal published by Springer Science+Business Media. The journal publishes majorly in the area(s): Stomatal conductance & Xylem. It has an ISSN identifier of 0931-1890. Over the lifetime, 3443 publications have been published receiving 97406 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Empirically and intuitively, architectural features seem to determine the effect of root systems on erosion phenomena and an effort is made here to link both aspects.
Abstract: The contribution of plant root systems to slope stability and soil erosion control has received a lot of attention in recent years. The plant root system is an intricate and adaptive object, and understanding the details of soil–root interaction is a difficult task. Although the morphology of a root system greatly influences its soil-fixing efficiency, limited architectural work has been done in the context of slope stabilization and erosion control, and hence it remains unknown exactly which characteristics are important. Many of the published research methods are tedious and time-consuming. This review deals with the underlying mechanisms of shallow slope stabilization and erosion control by roots, especially as determined by their architectural characteristics. The effect of soil properties as well as the relative importance of different root sizes and of woody versus non-woody species are briefly discussed. Empirically and intuitively, architectural features seem to determine the effect of root systems on erosion phenomena and an effort is therefore made here to link both aspects. Still, the research to underpin this relationship is poorly developed. A variety of methods are available for detailed root system architectural measurement and analysis. Although, generally time-consuming, a full 3D architectural description followed by analysis in software such as AMAPmod offers the possibility to extract relevant information on almost any root system architectural characteristic. Combining several methods of measurement and analysis in a complementary way may be a useful option, especially in a context of modelling.

476 citations

Journal ArticleDOI
TL;DR: In this paper, a functional understanding of the physical and biological processes underlying mangrove ecosystem dynamics is presented. But this process is not suitable for the management of mangroves.
Abstract: Mangrove forests are of major ecological and commercial importance, yet the future of these resources is threatened by pollution, development and over-exploitation. There is an urgent need to develop sound management practices based on a functional understanding of the physical and biological processes underlying mangrove ecosystem dynamics. Such biological processes include dispersal (Rabinowitz 1978), herbivory (Smith 1987) and the physiological bases of species interactions and responses to environmental factors. Understanding these processes is essential for the development of more comprehensive and predictive modelling of mangrove ecosystem dynamics than has previously been possible.

465 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the impact of global climate change on the performance of European beech (Fagus sylvatica) in the southern part of central Europe.
Abstract: Over large areas of Europe, coniferous monocultures are being transformed into mixed forests by the re-introduction of broadleaf tree species belonging to the potential natural vegetation. One important species of interest in this changing forest policy is European beech (Fagus sylvatica). However, at present, this forest management directive has ignored potential adverse effects of global climate change on wide-spread re-introduction of beech to these areas. Average global surface temperatures have risen by approx. 0.8°C in the period between 1861 and 2005 and are expected to continue to increase until the end of this century by 1.5–5.8°C above the 1990 value. To estimate the climate change in the southern part of central Europe in future, we reviewed calculations from regional climate models. Temperature increase for the southern part of central Europe is projected to be up to 2°C within the next 40 years. In contrast, the annual precipitation will most likely remain constant over the same time period, but will experience significant changes in seasonal patterns. Rising intensities of individual precipitation events may result in increasing number and intensities of flooding events and reduced precipitation during the growing season in a higher frequency of summer droughts. Growth and competitive ability of European beech will not, necessarily, respond to increasing CO2 concentrations but may be strongly impacted by intensive drought that occurs during the growing season. Seedlings as well as adult trees may suffer from xylem embolism, restricted nutrient uptake capacity and reduced growth under limited water availability. However, it remains uncertain to what extent other environmental factors (e.g. soil properties, competitive interactions) may modify the drought response of beech, thus either enhancing susceptibility or increasing drought tolerance and resilience potential. Water-logged soils, predicted during the spring for several regions due to higher than average precipitation, could negatively impact nutrient uptake and growth of beech. Whereas other dominant species as, e.g. oak are well adapted to that environmental stress, beech is known to be sensitive to water-logging and flooding. Thus, the competitive capacity of beech might—depending on the other environmental conditions—be reduced under the expected future climate conditions. Silvicultural practices must be aware today of the potential risks which a changing climate may impose on sustainable forest development.

395 citations

Journal ArticleDOI
TL;DR: It is concluded that high salinity reduces photosynthesis in leaves of B. parviflora primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.
Abstract: The effects of a range of salinity (0, 100, 200 and 400 mM NaCl) on growth, ion accumulation, photosynthesis and anatomical changes of leaves were studied in the mangrove, Bruguiera parviflora of the family Rhizophoraceae under hydroponically cultured conditions. The growth rates measured in terms of plant height, fresh and dry weight and leaf area were maximal in culture treated with 100 mM NaCl and decreased at higher concentrations. A significant increase of Na+ content of leaves from 46.01 mmol m-2 in the absence of NaCl to 140.55 mmol m-2 in plants treated with 400 mM NaCl was recorded. The corresponding Cl- contents were 26.92 mmol m-2 and 97.89 mmol m-2. There was no significant alteration of the endogenous level of K+ and Fe2+ in leaves. A drop of Ca2+ and Mg2+ content of leaves upon salt accumulation suggests increasing membrane stability and decreased chlorophyll content respectively. Total chlorophyll content decreased from 83.44 μg cm-2 in untreated plants to 46.56 μg cm-2 in plants treated with 400 mM NaCl, suggesting that NaCl has a limiting effect on photochemistry that ultimately affects photosynthesis by inhibiting chlorophyll synthesis (ca. 50% loss in chlorophyll). Light-saturated rates of photosynthesis decreased by 22% in plants treated with 400 mM NaCl compared with untreated plants. Both mesophyll and stomatal conductance by CO2 diffusion decreased linearly in leaves with increasing salt concentration. Stomatal and mesophyll conductance decreased by 49% and 52% respectively after 45 days in 400 mM NaCl compared with conductance in the absence of NaCl. Scanning electron microscope study revealed a decreased stomatal pore area (63%) in plants treated with 400 mM NaCl compared with untreated plants, which might be responsible for decreased stomatal conductance. Epidermal and mesophyll thickness and intercellular spaces decreased significantly in leaves after treatment with 400 mM NaCl compared with untreated leaves. These changes in mesophyll anatomy might have accounted for the decreased mesophyll conductance. We conclude that high salinity reduces photosynthesis in leaves of B. parviflora, primarily by reducing diffusion of CO2 to the chloroplast, both by stomatal closure and by changes in mesophyll structure, which decreased the conductance to CO2 within the leaf, as well as by affecting the photochemistry of the leaves.

388 citations

Journal ArticleDOI
TL;DR: In this article, a review of the sap flow measurement techniques and evaluation of data is presented, with particular attention paid to the trunk segment heat balance (THB) and heat field deformation (HFD) methods.
Abstract: Sap flow measurement techniques and evaluation of data are reviewed. Particular attention is paid to the trunk segment heat balance (THB) and heat field deformation (HFD) methods based on 30 years experience. Further elaboration of sap flow data is discussed in terms of integrating flow for whole stems from individual measuring points, considering variation of radial patterns in sapwood and variation around stems. Scaling up of data from sets of sample trees to entire forest stands based on widely available biometric data (partially on remote sensing images) is described and evaluated with a discussion of the magnitude of errors, the routine procedure applicable in any forest stand and practical examples.

367 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202354
2022135
2021221
2020119
2019135
2018146