scispace - formally typeset
Search or ask a question

Showing papers in "World Journal of Nuclear Science and Technology in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors assess radiation risks due to natural radioactivity in samples of fly and bottom ashes collected from JLEC (Jorf Lasfar Energy Company) thermal power plant, and different analyses are performed through two nuclear techniques such as gamma spectrometry and alpha dosimetry based on the use of LR115 films detectors.
Abstract: Coal is the main energy source for electricity generation in the world. In Morocco, 37% of electricity generation comes from combustion coal in thermal power plants. This combustion process generates large amounts of fly and bottom ashes. In recent years, these ashes became a great topic of interest because of their different uses and especially in construction materials. In this work, we assess radiation risks due to natural radioactivity in samples of fly and bottom ashes collected from JLEC (Jorf Lasfar Energy Company) thermal power plant, and different analyses are performed through two nuclear techniques such as gamma spectrometry and alpha dosimetry based on the use of LR115 films detectors. Our analysis shows that 226 Ra activities and 232 Th in both ash samples are well above the permissible activity. The values of the external risk index (Hex) and internal one (Hin) for these ashes are below unity, with the exception of 1.28 in fly ash for Hin. The obtained values for the equivalent radium Raeq and annual effective doses Ė in fly and bottom ashes are 324 Bq/kg and 210 Bq/kg, and 0.18 mSv/y and 0.11 mSv/y, respectively. The surface radon exhalation rates for the samples of fly and bottom ashes are 276 mBq • m −2 • h −1 and 381 mBq • m −2 • h −1 , respectively. Based on these results, we have shown that fly ash and bottom one from thermal power plant JLEC didn't have, in any case, a health risk to the public so it can be effectively used in various construction activities.

20 citations


Journal ArticleDOI
TL;DR: In this article, a simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated.
Abstract: A simple method employing a pair of pancake-style Geiger-Mueller (GM) counters for quantitative measurement of radon activity concentration (activity per unit volume) is described and demonstrated. The use of two GM counters, together with the basic theory derived in this paper, permit the detection of alpha particles from decay of and progeny ( 218Po, 214Po) and the conversion of the alpha count rate into a radon concentration. A unique feature of this method, in comparison with standard methodologies to measure radon concentration, is the absence of a fixed control volume. Advantages afforded by the reported GM method include: 1) it provides a direct in-situ value of radon level, thereby eliminating the need to send samples to an external testing laboratory; 2) it can be applied to monitoring radon levels exhibiting wide short-term variability; 3) it can yield short-term measurements of comparable accuracy and equivalent or higher precision than a commercial radon monitor sampling by passive diffusion; 4) it yields long-term measurements statistically equivalent to commercial radon monitors; 5) it uses the most commonly employed, overall least expensive, and most easily operated type of nuclear instrumentation. As such, the method is par-ticularly suitable for use by researchers, public health personnel, and home dwellers who prefer to monitor indoor radon levels themselves. The results of a consecutive 30-day sequence of 24 hour mean radon measurements by the proposed GM method and a commercial state-of-the-art radon monitor certified for radon testing are compared.

8 citations


Journal ArticleDOI
TL;DR: In this paper, the radiological impact of coal ashes, with enhanced natural radioactivity in the storage site of the JLEC-Morocco thermal power plant, is assessed by alpha dosimetry and a digital dosimeter on samples of coal ash, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site.
Abstract: The radiological impact of coal ashes, with enhanced natural radioactivity in the storage site, is due to the presence of naturally occurring radionuclides. Some of these radionuclides have a radioactive period of several million years and will, therefore, have time to migrate to the soil, atmospheric air, surface water, and groundwater. This impact depends mainly on the activity of these coal ashes, the duration of exposure to such waste, transfers to the air, and the leaching phenomenon by rainwater. In this study, and so as to assess the radiological impact of coal ashes of the storage site of the JLEC-Morocco thermal power plant on environment, some analyses are performed by alpha dosimetry and a digital dosimeter on samples of coal ashes, soil, atmospheric air, surface water and groundwater belonging to a perimeter of 10 km around that site. The obtained results show that, within the studied area, the radiological impact on the soil of the coal ashes of the storage site is insignificant even though the concentrations of radon in the near vicinity (1 to 2 km) are moderately important, and remain below 200 Bq/m3. In the atmospheric air, this impact remains medium for the neighborhoods of the storage site (2 to 3 km) with radon activities superior to 10 Bq/m3. These results also show that there may be a water contamination of wells located at the storage site without any transfer of radioactivity into the groundwater of the area studied where the concentrations of radon are less than 11.1 Bq/l.

5 citations


Journal ArticleDOI
TL;DR: In this article, an analytic modeling of thermal-hydraulics nuclear reactor SMR CAREM-25, when the nanofluid Al2O3-Water used as cooling fluid in the cooling system of a nuclear reactor was done on CFD.
Abstract: Development and use of nuclear energy is currently growing very rapidly, in order to achieve increasingly advanced technology, both in terms of design, economic factors and safety factors. Thermal-hydraulics aspects of nuclear reactors should be done with calculation and near-perfect condition. Including today began development of a nuclear reactor with low power below 300 MW, or commonly called the Small Modular Reactor (SMR). One is CAREM-25 developed by Argentina with a power of 25 MW, where in CAREM already using natural circulation system and the use of nanofluid as coolant fluid. In this research, analytic modeling of thermal-hydraulics nuclear reactor SMR CAREM-25, when the nanofluid Al2O3-Water used as cooling fluid in the cooling system of a nuclear reactor. Further to this analytic modeling will be done on CFD. Analytic modeling with CFD to determine the flow phenomena and distribution as well as the effect of nano-particles of Al2O3-Water based on the volume fraction (1% and 3%) of the coefficient of heat transfer by natural convection.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the surface modification of UMo particles in liquid state or during the solidification that follows the centrifugal atomization process is explored, with the main goal of this study being to explore the surface modifications of Umo particles.
Abstract: Generally, the atomization of UMo particles is done under vacuum or argon atmosphere, and the surface modification of these UMo particles is, usually, carried on through a further process. The techniques for surface modification of atomized UMo particles, aimed to control the Fuel/Matrix interaction, involve, in some cases, complex methodologies and often with minor effect due to the limited solubility of third elements in solid UMo alloy. The atomization and surface conditioning, applied in separate stages, may affect the efficiency of powder production process. Then, the main goal of this study is to explore the surface modification of UMo particles in liquid state or during the solidification that follows the centrifugal atomization process. Through the change of atomization atmosphere, could be possible to promote liquid/gas reactions, with a higher solubility of the modifier element in micro drops of UMo alloy, before they become solid particles. This paper presents comparative results of centrifugal atomization of UMo particles, carried out under inert argon and reactive nitrogen atmospheres. Dissolved nitrogen contents, measured by SEM-EDS analyses, reached up to 7.57 wt% at the center of under nitrogen atomized particles, very higher than 0.84 wt% of nitrogen measured at the center of UMo particle atomized under argon. The presence of uranium nitride was partially verified by conventional XRD analysis. Nevertheless, Out-of-Pile interaction test result, reveals decreasing of aluminium contents into UMo particles atomized under nitrogen atmosphere; Just 3.77 wt% of Al was the maximum content detected in the center of these particles, very lower than 29.11 wt% of Al measured inside UMo particles atomized under argon. Finally, it is possible to conclude that the atomization under reactive atmosphere may modify the surface composition and the behavior of UMo fuel particles dispersed in aluminium, for dispersion type nuclear fuel application.

3 citations


Journal ArticleDOI
TL;DR: In this article, the inaccuracy assessment of the friction pressure loss estimation based on Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular pipes when applied to a square rod bundle was done by comparing the analytical and semi-empirical predictions with two different CFD codes results.
Abstract: This paper deals with the inaccuracy assessment of the friction pressure loss estimation based on Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular pipes when applied to a square rod bundle. The assessment has been done by comparing the analytical and semi-empirical predictions with two different CFD codes results: CFX and NEPTUNE_CFD. Two different analytical approaches have been considered: the whole-bundle and sub-channel approaches, both for laminar and turbulent flow conditions. Looking at results, it is reasonable to assume that an error in the range of 11% - 23% is likely when using equivalent diameter in the laminar regime. In the case of turbulent regime, the equivalent diameter works better and the error is in the range between a few percent and ~12%.

2 citations


Journal ArticleDOI
TL;DR: In this article, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants, and they show that nuclear scattering and binding energy are both electromagnetic.
Abstract: After one century of nuclear physics, its underlying fundamental laws remain a puzzle. Rutherford scattering is well known to be electric at low kinetic energy. Nobody noticed that the Rutherford scattering formula works also at high kinetic energy, needing only to replace the repulsive electric -2 exponent by the also repulsive magnetic -6 exponent. A proton attracts a not so neutral neutron as amber attracts dust. The nucleons have magnetic moments that interact as magnets, equilibrating statically the electric attraction between a proton and a not so neutral neutron. In this paper, the electromagnetic potential energies of the deuteron 2H and the α particle 4He have been calculated statically, using only electromagnetic fundamental laws and constants. Nuclear scattering and binding energy are both electromagnetic.

2 citations


Journal ArticleDOI
TL;DR: In this article, the main goal of the current study was to determine the fluorine in the sampled coal (SARM-18, SARM-19, and SARM20), opal glass NBS91 and phosphate rock NBS694 using neutron activation analysis.
Abstract: The main goal of the current study was to determine the fluorine in the rock samples coal (SARM-18, SARM-19, and SARM-20), opal glass NBS91 and phosphate rock NBS694 using neutron activation analysis. Neutrons energy of 14 MeV used for irradiation was produced by bombardment of a water-cooled titanium tri-tide target with a beam of deuterons accelerated to a potential of 350 KV to develop a neutron flux (108 n⋅cm-2⋅s-1) on the sample at the neutron generator in the ECN (Netherlands Energy Research Foundation) Petten. This new approach contributes to the existing knowledge of fluorine measurement by the coincidence channels investigation of the positron energy with respect to decay time for each radionuclide element. The present study was designed to determine the fluorine by fast neutron through the reaction of F19 (n, 2n) F18. Interference was treated by irradiating the standard of these elements and reasonable selection of the decay time between the end of irradiation and beginning of counting time. The results of this method indicate that the concentration of fluorine is agreed fairly with literatures.

2 citations


Journal ArticleDOI
TL;DR: In this article, the authors used COMSOL Multiphysics software program in its 4.3b version to model a uranium dioxide production reactor using three kinds of studies: momentum, heat and mass transport.
Abstract: This article shows the modeling of a uranium dioxide production reactor using COMSOL Multiphysics software program in its 4.3b version. The model was made using 3 kinds of studies: momentum, heat and mass transport, in order to determine the influence of the most important operational parameters: UO3 reaction rate, composition and flow of the reduction gas, the initial temperature reactor and the reducing gas. The operational parameters evaluated were the followings: constant gas flow of2.5 L/min, initial hydrogen concentration of 0.25, 0.50 and0.75 M, and initial temperature of 400°C. The obtained results allow to conclude that under these working conditions, uranium dioxide is obtained virtually instantaneous and, with concentrations close to 0.5 M H2 in the reducing gas, the process can operate continuously and autogenously, without applying additional energy and temperatures around 600°C.

2 citations


Journal ArticleDOI
TL;DR: The approach of the paper consists in the creation of a mathematical linear model for minimization of costs that helps in minimizing costs in different production schemes and show the need of inventory.
Abstract: Several fuel plants that supply nuclear research reactors need to increase their production capacity in order to meet the growing demand for this kind of nuclear fuel. After the enlargement of the production capacity of such plants, there will be the need of managing the new production level. That level is usually the industrial one, which poses challenges to the managerial staff. Such challenges come from the fact that several of those plants operate today on a laboratorial basis and do not carry inventory. The change to the industrial production pace asks for new actions regarding planning and control. The production process based on the hydrolysis of UF6 is not a frequent production route for nuclear fuel. Production planning and control of the industrial level of fuel production on that production route is a new field of studies. The approach of the paper consists in the creation of a mathematical linear model for minimization of costs. We also carried out a sensitivity analysis of the model. The results help in minimizing costs in different production schemes and show the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. The management team will therefore have a clearer view of the costs and of the new, necessary production and inventory levels.

2 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell and determined if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.
Abstract: This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidently exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. This analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.

Journal ArticleDOI
TL;DR: A new ALS based PMS is designed by overcoming the restrictions of communication modules etc and the evaluations indicate the design meets the requirements and can be applied for coming projects.
Abstract: Westinghouse company (WEC) had developed a Nuclear Regulatory Commission (NRC) approved advanced logic system (ALS) platform based on field programmable gate array (FPGA) technology as the next generation 1E class platform for protection and monitoring system (PMS) development for nuclear power plants. In compliance with the requirements of typical PMS functions, a new ALS based PMS is designed by overcoming the restrictions of communication modules etc. The consistency with data communication independence and isolation, deterministic, diversity requirements etc. is analyzed. The evaluations indicate the design meets the requirements and can be applied for coming projects.

Journal ArticleDOI
TL;DR: In this article, it was shown that the anomalous Rutherford scattering can be solved by replacing the Coulomb electric potential in 1/r, by the repulsive magnetic Poisson potential in 2/r3.
Abstract: After one century of nuclear physics, the anomalous Rutherford scattering remains a puzzle: its underlying fundamental laws are still missing. The only presently recognized electromagnetic interaction in a nucleus is the so-called Coulomb electric force, in 1/r, only positive thus repulsive in official nuclear physics, explaining the Rutherford scattering at low kinetic energy of the impacting alpha particles. At high kinetic energy the Rutherford scattering formula doesn’t work, thus called “anomalous scattering”. I have discovered that, to solve the problem, it needs only to replace, at high kinetic energy, the Coulomb repulsive electric potential in 1/r, by the also repulsive magnetic Poisson potential in 1/r3. In log-log coordinates, one observes two straight lines of slopes, respectively −2 and −6. They correspond with the −1 and −3 exponents of the only repulsive electric and magnetic interactions, multiplied by 2 due to the cross-sections. Both Rutherford (normal and anomalous) scattering have been calculated electromagnetically. No attractive force needed.

Journal ArticleDOI
TL;DR: The beam energy measurement system is significant and profit for both BES-III detector and BEPC-II accelerator as discussed by the authors, which involves the components reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the usage of electric cooling system for high purity germanium detector, and the refinement of data acquisition and processing subsystem.
Abstract: The beam energy measurement system is significant and profit for both BES-III detector and BEPC-II accelerator. The detection of the high energy scattering photons is realized by virtue of the Compton backscattering principle. Many advanced techniques and precise instruments are employed to acquire the highly accurate measurement of positron/electron beam energy. During five years’ running period, in order to satisfy the requirement of data taking and enhance the capacity of measurement itself, the upgradation of system is continued, which involves the components reformation of laser and optics subsystem, replacement of view-port of the laser to vacuum insertion subsystem, the usage of electric cooling system for high purity germanium detector, and the refinement of data acquisition and processing subsystem. The upgrading of system guarantees the smooth and effective measuring of beam energy at BEPC-II and accommodates the accurate offline energy values for further physics analysis at BES-III.

Journal ArticleDOI
TL;DR: In this article, a research performed in Angra dos Reis, RJ, Brazil, where a nuclear power plant is located, shows that there is a lack of information and awareness about the emergency plan.
Abstract: The presence of a potentially hazardous facility in a community demands several safety procedures. Bringing risk communication among those actions may help the population that lives near the facility feel more confident and have the required knowledge on how to behave in an emergency situation. A research performed in Angra dos Reis, RJ, Brazil, where a nuclear power plant is located, shows that there is a lack of information and awareness about the emergency plan.

Journal ArticleDOI
TL;DR: The unified analysis performed and the confirmatory computational results found are summarized in this paper, and the particular splitting found has been verified up to fourteen pipes, involving calculations in systems with even and odd number of pipes using the RELAP5 systems thermal-hydraulics code.
Abstract: Previous analytical results on flow splitting are generalized to consider multiple boiling channels systems. The analysis is consistent with the approximations usually adopted in the use of systems codes (like RELAP5 and TRACE5, among others) commonly applied to perform safety analyses of nuclear power plants. The problem is related to multiple, identical, parallel boiling channels, connected through common plena. A theoretical model limited in scope explains this flow splitting without reversal. The unified analysis performed and the confirmatory computational results found are summarized in this paper. New maps showing the zones where this behavior is predicted are also shown considering again twin pipes. Multiple pipe systems have been found not easily amenable for analytical analysis when dealing with more than four parallel pipes. However, the particular splitting found (flow along N pipes dividing in one standalone pipe flow plus N -1 identical pipe flows) has been verified up to fourteen pipes, involving calculations in systems with even and odd number of pipes using the RELAP5 systems thermal-hydraulics code.

Journal ArticleDOI
TL;DR: In this article, a sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder Xray diffraction (XRD), and MOssbauer spectrographs at room temperature.
Abstract: Natural magnetic black sands are known from several sites often located in areas of volcanic origin. Their elemental and mineral composition provides information on the geology of their territory and depends on several factors occurred during their formation. A sample of black sand was collected on the seashore of the island of Mayotte in the Indian Ocean and its magnetic part was investigated by means of energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), and MOssbauer spectroscopy at room temperature. The mineral composition is dominantly magnetite, in good agreement with samples collected in other sites of volcanic origin. Contrary to pure magnetite, a relevant fraction of Ti was detected by EDS. The 16% Ti and 1% Mn content increase the magnetite lattice parameter to 8.4312 (25) A. The broadening of XRD lines pointed towards a significant degree of disorder. This was confirmed by MOssbauer spectroscopy and is attributed to the presence of Ti replacing Fe in the magnetite lattice. The presence of Ti modifies the local magnetic field on the Fe sites, leading to a broader and more complex MOssbauer transmission spectrum with respect to the one of pure magnetite. To study the effect of temperature, samples were heated for 12 hours to 600°C and 800°C in argon and to 1000°C in air. Annealing in argon did not improve the crystallinity while annealing in air caused a complete decomposition of magnetite into hematite and pseudobrookite.

Journal ArticleDOI
TL;DR: A more compact representation of the Segre chart of nuclides can be obtained replacing the isotopic neutron with the corresponding neutron excess number; a first sight inspection of all the natural isotopes is produced as mentioned in this paper.
Abstract: A more compact representation of the Segre chart of nuclides can be obtained replacing the isotopic neutron with the corresponding neutron excess number; a first sight inspection of all the natural isotopes is produced. The resulting representation shows a built-inorder in the organization of the nuclear components into the nuclei of the natural isotopes, sustained by the relevant role of the magic numbers. The interpretation, on the identical foot, of the nuclear instability of Tc, Pm and of the elements following Bi is suggested. The present representation reminds the spheron model of the nuclear structure suggested by L. Pauling. The alpha decay paths of radioactive isotopes are shown, side by side to the low energy nuclear transmutations (LENR). Representations of the artificial isotopes of the chemical elements and of the stellar nucleosynthesis processes are also proposed.

Journal ArticleDOI
TL;DR: In this article, the mass attenuation coefficients were measured for the first time in Arsenic oxide (As2O3) using HPGe detector, and no evidence could be gained in favor of microscopic theories such as RRS and EXAFS, insofar as there are no energy points within a range of 100eV on either side of the K-edge.
Abstract: Measurements of K-shell mass attenuation coefficients are reported for the first time in Arsenic oxide (As2O3). Experiments are performed using Arsenic Oxide extended range HPGe detector. To achieve measurements at many small and regular energy intervals, secondary X-ray emission technique using “Seventeen Scatters” is employed. The results are in agreement with the proposed theoretical estimates. No evidence could, however be gained in favor of microscopic theories such as RRS and EXAFS, insofar as there are no energy points within a range of 100eV on either side of the K-edge.

Journal ArticleDOI
TL;DR: In this article, the authors present a scheme of model calculations assuming the whole process can be divided into two stages: excitation of carbon nuclei by impinging protons and deexcitation of the C* (4.44 MeV) state.
Abstract: An experiment investigating gamma emission in hadron therapy was performed at Cyclotron Centre Bronowice (CCB), Cracow, Poland, using two different phantom materials—carbon and poly(methyl methacrylate) PMMA. The measurements were carried out at 70 MeV proton beam energy and the gamma quanta were registered with the use of HP Ge detector with scintillation anti-Compton shielding. Although the primary aim was to establish a solid experimental data base for future applications in prompt gamma imaging, the data have also been analyzed with regards to the position and shape of the spectral line stemming from deexcitation of the carbon excited state 4.44 MeV. Measurements potentially useful to determine the cross section were performed only at 90° laboratory polar angle. However, benefiting from the very good energy resolution it turned out possible to extract information on angular distribution of the C* (4.44 MeV) deexcitation by analyzing the associated line shape. This paper presents the scheme of model calculations assuming the whole process can be divided into two stages: excitation of carbon nuclei by impinging protons and deexcitation of the C* (4.44 MeV) state.

Journal ArticleDOI
TL;DR: An overview of the study of some dosimetric quantities in the vicinity of the Tunisian Gamma Irradiation Facility is presented, which well confirmed the modeling of the CNSTN extended source by a pencil-like source and the isodose curves are determined.
Abstract: The present work presents an overview of the study of some dosimetric quantities in the vicinity of the Tunisian Gamma Irradiation Facility. Firstly, we have confirmed our previous calculation of the photon flux and the dose rates, using a simulation with GEANT 4. A good agreement between calculation and simulation was obtained, which well confirmed the modeling of the CNSTN extended source by a pencil-like source. Secondly we have determined the isodose curves in the vicinity of the irradiator using a straightforward calculation. Finally, we have presented many comments for some published work concerning the methods used to determine these dosimetric quantities.

Journal ArticleDOI
TL;DR: In this article, the full energy peak (photopeak) efficiency and photopeak attenuation coefficient of 3'' × 3'' NaI(Tl) well-type scintillation detector were calculated using gamma-rayisotropic radiating point sources (with photon energy: 0.245, 0.344, 0.,662, 0,779, 1.1732, 1,333 and 1.408 MeV) placed outside the detector well.
Abstract: In this paper full-energy peak (photopeak) efficiency and photopeak attenuation coefficient of 3'' × 3'' NaI(Tl) well-type scintillation detector were calculated using gamma-rayisotropic radiating point sources (with photon energy: 0.245, 0.344, 0.662, 0.779, 0.964, 1.1732, 1.333 and 1.408 MeV) placed outside the detector well. These energies were obtained from 152Eu, 137Cs and 60Co. The relations between the full energy peak efficiency and photopeak attenuation coefficients, were plotted vs. photon energy at different sources to detector distance, and it found that the full energy peak efficiency decreased by increasing the distance between the source and the detector.

Journal ArticleDOI
TL;DR: In this article, the Taylor's relaxed state (force-free) toroidal plasmas equation is used to study the magnetic dynamo or relaxation of compact toroidal magnetized (CTM) plasmas.
Abstract: Compact toroidal magnetized plasmas are an important part of the world’s magnetic fusion and plasma science efforts. These devices can play an integral role in the development of magnetic fusion as a viable commercial energy source, and in our understanding of plasma instabilities, particle and energy transport, and magnetic field transport. In this paper, we are developing a numerical program to study the magnetic dynamo or relaxation of CT’s characterized by arbitrary tight aspect ratio (major to minor radii of tokamak) and arbitrary cross-sections (Multi-pinch and D-Shaped). The lowest ZFE’s has been calculated through the Taylor’s relaxed state (force-free) toroidal plasmas equation. For ZFE’s, we use the toroidal flux vanishing boundary condition along the whole boundary of tokamaks. Several runs of the program for various wave numbers showed that ZFE was very insensitive to the choice of wave numbers. Besides, the CT’s poloidal magnetic field topologies are well represented. It was very interesting to check our methods for the cases when aspect ratio tends to unity (zero tokamak whole). A good fulfillment of the boundary condition is achieved.

Journal ArticleDOI
TL;DR: In this paper, the de Broglie hypothesis was used for the analysis of coulombic fields inside the nucleus of the atom for reflection and transmission with corresponding wave vectors, phase shifts and eigenfunctions.
Abstract: Rutherford classical scattering theory, as its quantum mechanical analogue, is modified for scattering cross-section and the impact parameter by using quantum mechanical momentum, (de Broglie hypothesis), energy relationship for matter oscillator (Einstein’s oscillator) and quantum mechanical wave vectors, and , respectively. It is observed that the quantum mechanical scattering cross-section and the impact parameter depended on inverse square law of quantum action (Planck’s constant). Born approximation is revisited for quantum mechanical scattering. Using Bessel and Neumann asymptotic functions and response of nuclear surface potential barrier, born approximations were modified. The coulombic fields inside the nucleus of the atom are studied for reflection and transmission with corresponding wave vectors, phase shifts and eigenfunctions Bulk quantum mechanical tunneling and reflection scattering, both for ruptured and unruptured nucleus of the atom, are deciphered with corresponding wave vectors, phase shifts and eigenfunction. Similar calculation ware accomplished for quantum surface tunneling and reflection scattering with corresponding wave vectors, phase shifts and eigenfunctions. Such diverse quantum mechanical scattering cross-section with corresponding wave vectors for tunneling and reflection, phase shifts and eigenfunctions will pave a new dimension to understanding the behavior of exchange fields in the nucleus of the atom with insides layers both ruptured and unruptured. Phase shifts, δl for each of the energy profile (partial) will be different and indeed their corresponding wave vectors for exchange energy eigenvalues.

Journal ArticleDOI
TL;DR: This pilot study did not find definitive value of adding SPECT based LVMD to abnormal cardiac MIBG imaging in SHF patients with regards to predicting outcomes and it is possible that LVMD works independently through different pathways in the progression of SHF and hence may not necessarily add incremental value to AMSI determination using M IBG.
Abstract: Background: Altered myocardial sympathetic innervation activity (AMSI) is known to be present in systolic heart failure patients (SHF) and recently SPECT imaging using I-123 mIBG heart to mediastinum (H/M) ratio <1.6 has been shown to predict MACE in the ADMIRE-HF trial. Left ventricular mechanical dyssynchrony (LVMD) is known to be present in a substantial number of SHF patients and has been studied mainly to guide CRT therapy. Recently gated SPECT has shown promise to provide an accurate assessment of LVMD. It remains unclear how the combination of AMSI and LVMD collectively affect clinical outcomes and other cardiovascular parameters. Objectives: The objectives are to examine the clinical characteristics and incremental prognostic value for MACE of LVMD determined by SPECT in SHF patients with or without abnormal cardiac MIBG uptake (H/M ratio < 1.6). Methods: Out of 30 SHF patients who participated from our institution in the ADMIRE-HF trial studying MIBG based AMSI, we included 22 patients with abnormal MIBG H/M ratio of <1.6. We performed gated SPECT LVMD analysis on these patients using the Emory Cardiac Toolbox. The 2 SPECT variables for LVMD assessed were histogram bandwidth and phase standard deviation both of which assess the extent of dispersion of LV activation during contraction as a marker of LVMD. Patients were followed up for a mean period of 6 years. The primary end point was mortality from any cause and secondary end point was heart failure admission or myocardial infarction or ICD shock. Results: 2 Groups were defined: Group A: n = 17 with H/M MIBG ratio < 1.6 and +LVMD and Group B, n = 5 H/M MIBG ratio < 1.6 and −LVMD. Baseline characteristics, cardiac risk factors and medications were comparable between both groups. LVEF was lower and RBBB was less common in Group A. There was no statistical difference in achievement of primary or secondary end points in the two groups including death heart failure readmissions, ICD shocks or MI. Conclusions: In our pilot study, we did not find definitive value of adding SPECT based LVMD to abnormal cardiac MIBG imaging in SHF patients with regards to predicting outcomes. Although our sample size is too small to make any definitive conclusions, it is possible that LVMD works independently through different pathways in the progression of SHF and hence may not necessarily add incremental value to AMSI determination using MIBG.

Journal ArticleDOI
TL;DR: The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers, and new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion.
Abstract: This work aimed at proposing a new combination of technologies to improve military performances and reduce costs of nuclear attack submarines, without overlooking safety constraints The last generation of nuclear attack submarines increased size to meet safety and operational requirements, imposing huge burden on costs side, reducing fleet size The limitations of current Technologies employed were qualitatively discussed, explaining their limitations There are new technologies (plate and shell heat exchangers) and architectural choices, like passive safety, and segregation of safety and normal systems, which may lead to reduction of costs and size of submarines A qualitative analysis was provided on this combination of technologies, stressing their commercial nature and maturity, which reduced risks The qualitative analysis showed the strong and weak points of this proposal, which adopted the concept of strength in numbers Concluding, new Technologies enabled the existence of 3800 t nuclear attack submarines with powerful propulsion systems and good acoustic discretion

Journal ArticleDOI
TL;DR: In this article, the effect of accumulated in coolant potential energy on safety and economics is considered and the main point of the conflict is that for traditional type reactors the increase of requirements to safety of nuclear power plants (NPP) worsens their economical characteristics.
Abstract: The conflict between safety and economics requirements is peculiar to the present nuclear power (NP). The main point of the conflict is that for traditional type reactors the increase of requirements to safety of nuclear power plants (NPP) worsens their economical characteristics. This is caused by large potential energy accumulated in reactor coolant. In the presented paper the opportunity and expediency of changeover to reactors with heavy liquid-metal coolants (HLMC) in future NP is grounded. First of all, this refers to lead-bismuth coolant (LBC) mastered in the process of operating nuclear submarines (NS) reactors. The reactor facilities (RFs) of that type cannot cause destruction of defense barriers and make possible deterministic elimination of severe accidents with catastrophic radioactivity release. So it will make possible to eliminate the highlighted conflict and reasons for existence of population’s radiophobia. Lead-bismuth fast reactor SVBR-100 with electric power of 100 MWe is the reactor facility of that type. The effect of accumulated in coolant potential energy on safety and economics is considered. Main specific features of SVBR-100 technology providing a high level of inherent self-protection and passive safety are presented.

Journal ArticleDOI
TL;DR: In this article, the high-current plasma beams model under different dimensions (1D, 2D, and 3D) by continuum (magnetohydrodynamics MHD) and statistical (Monte Carlo======MC) mechanics under conditions of low pressures (10-3 Pa).
Abstract: The paper builds the high-current plasma beams model under different dimensions (1D, 2D, and 3D) by continuum (magnetohydrodynamics MHD) and statistical (Monte Carlo MC) mechanics under conditions of low pressures (10-3 Pa). After detailed presentation of the model, two methods firstly have been analyzed in terms of plasma beam properties. Then, we compare the simulation results of MHD numerical simulation with MC stochastic particles simulation. Finally, through further analysis, it is demonstrated that integrated hybrid MHD and MC method (IMHDMC) provides an innovative practical tool to capture essential properties of high-current plasma beams.