scispace - formally typeset
Search or ask a question

Showing papers in "Zeitschrift Fur Kristallographie-new Crystal Structures in 2000"


Journal ArticleDOI
TL;DR: Ba6Ge25 as discussed by the authors is the second binary prototype of the BaoIn4Ge2i type, which is characterized by a chiral 3D framework of condensed Ge2o pentagondodecahedra (pdod) embedded in a 3D channel labyrinth.
Abstract: Ba6Ge25, cubic, P4i32 (No. 213), a = 14.5564(2) A, V = 3075.8 A, Ζ = 4, pm = 5.698 g -cm", R g t ( F ) = 0.089, wR(F) = 0.086, Γ =293 Κ. Source of material The compound was prepared from the elements by melting in an open glassy carbon crucible (HF furnace, argon atmosphere) and annealing at 923 Κ (12 d). Ba6Ge25 is silvery metallic, brittle, stable in air and moisture. Discussion BaaGe25 belongs to the chiral clathrate structure family cP 124, being the second binary prototype of the BaoIn4Ge2i type [1-4]. The structure is characterized by a chiral 3D framework of condensed Ge2o pentagondodecahedra (pdod) embedded in a 3D channel labyrinth. Each pdod ist centered by Bal and the rest Ba atoms occupy the cavities in the zeolite-like labyrinth. The rather large elongation of the displacement ellipsoid of Ba2 (M2) is typical for the structure family. The Ge—Ge bond lengths vary between 2.47 A and 2.56 A. Per formula unit, there are seventeen fourfold bonded (4b) Ge° atoms and eight Ge are threefold bonded (3b)Ge : (Ba)6((3b)Ge")8((4b)Ge°)i7(4el. There are no indications of vacancies in the Ge framework. The compound is a Zintl phase with few conduction electrons. Below 180 K, the compound is a semiconducting Zintl phase with 4e in localized antibonding states of the Ge framework and it becomes metallic above 250 Κ [1], Table 1. Data collection and handling. Crystal: silvery block, size 0.10 χ 0.08 χ 0.02 mm Wavelength: Mo Ka radiation (0.71073 A) μ·· 315.23 cm" Diffractometer, scan mode: Nicolet R3m/V, ω 20max: 65° N(hkl)„,easured, N(hkl)u„ique: 1750, 1405 Criterion for F0bs, N(hkl)gC. Fobs > 4 o(Fobs), 630 N(param)Kiinea'· 49 Programs: SHELXTL-plus [5], ATOMS [6] Table 2. Atomic coordinates and displacement parameters (in A). Atom Site χ y ζ U11 U22 C/33 U12 U13 i/23 Ba(l) 8c 0.0607(2) X X 0.017(1) U11 Uu 0.002(1) U12 U12 Ba(2) 12d 1/8 0.1887(3) y+1/4 0.107(6) 0.031(2) U21 0.276(3) 0.005(3) -U13 Ba(3) 4 a 3/8 3/8 3/8 0.025(2) Uu Uu 0.010(2) Uu U12 Ge(l) 24e 0.2929(4) 0.9538(4) 0.7501(4) 0.016(3) 0.015(2) 0.017(3) 0.002(2) 0.003(2) 0.001(2) Ge(2) 8c 0.9251(4) X X 0.015(2) Uu υ η 0.002(2) U\2 U12 Ge(3) 8c 0.2182(5) X X 0.027(2) V11 Uu 0.005(3) Un Un Ge(4) 12d 1/8 0.8309(4) y+1/4 0.010(3) 0.017(2) U22 0.156(2) -0.004(2) U n Ge(5) 24e 0.9166(4) 0.0847(4) 0.8532(4) 0.015(3) 0.020(3) 0.015(2) 0.001(2) 0.001(2) 0.000(2) Ge(6) 24e 0.1853(4) 0.9899(3) 0.8767(4) 0.015(2) 0.013(2) 0.017(3) -0.004(2) -0.003(2) 0.003(2) * Correspondence author (e-mail: carrillo@cpfs.mpg.de) 10.1515/ncrs-2000-0208 Downloaded from PubFactory at 09/02/2016 06:03:31AM via free access 208 Hexabarium pentacosagermanide

27 citations


Journal ArticleDOI
TL;DR: The first refinement of the title structure from the powder data gave the composition CssSrus with relatively large displacement for the Sn 1 position and the strong anisotropy at the Sn 3 position.
Abstract: CsgSn44, cubic, Pm3n (No. 223), a = 12.105(1) Ä, V= 1773.8 Ä, Ζ = Γ = 2 9 3 Κ. 1, Rgi(F) = 0.021, wRKf(F) = 0.038, Discussion The first refinement of the title structure from the powder data gave the composition CssSrus with relatively large displacement for the Sn 1 position [ 1 ]. The standard refinement (averaged structure, without split positions) results in the composition CsgSn,, with η = 44.0+0.1 (R(F) = 0.059; see Table 2 and also [2,3]). The Cs2 anisotropic displacement is usually observed and is related to the shape of the Sn24 cage (Fig., lower part), but the large £/eq = 0.0437(8) for Sn and the strong anisotropy at the Sn3 position (Table 2) is unexpected. Bond lengths for the averaged structure: dl = 2.805 Ä, d2 = 2.846 Ä, d3 = 2.882 Ä, d4 = 2.735 Ä and dw = 2.819 A. The Sn3 displacement of about 0.3 Ä is related to the defects at the Snl position (note the short d4 distance). Further refinements [4] yield in CssSn„ with η = 44.00+0.02 and show unambiguously that the anisotropic Sn3 displacement results from the presence of two split positions, Sn31 and Sn32 (/?gt(F) = 0.021 for 249 Fohs > 4a(F0bs) and RM(F) = 0.032 for all 310 reflections, Table 3). The Sn31 and Sn32 positions are occupied alternatively in the ratio 4:2 which agrees perfectly with the distribution of 4 Sn atoms and two defects ( • ) at the 6c position of Sn 1. The Sn32 positions mark the four 3-fold bonded Sn\" anions around the defects (J4(Sn32— • ) = 2.32 Ä, J(Sn32—Sn32) = 3.79 Ä. Bond lengths are as follows: dl = 2.806 Ä, d2 = 2.801 A or 3.03 Ä, d3 = 2.77 Ä or 3.05 A, d4 = 2.86 Ä. The displacement ellipsoids indicate local equilibrations in the d2 and c/3 distances. Furthermore, the splittings of the Sn3 and Cs2 positions shorten Cs—Sn~ distances. For more details see [5]. Source of material The compound was synthesized from the elements in the stoichiometric ratio (sealed Ta tube, heating up to 1273 Κ for 3 h, annealing at 1270 Κ for 1 h and at 970 Κ for 2 d). C s g S n + ö forms well shaped grey crystals with metallic luster. The brittle compound is a semiconductor (Eg = 0.14 eV) and is stable in air and against dilute acids and bases. Table 1. Data collection and handling.

24 citations


Journal ArticleDOI
TL;DR: In this paper, the triclinic tricilinic was obtained after one week using an aqueous solution (10 ml) of sodium p-aminobenzoate (2 mmol) transferred to a test tube, then a methanolic solution of cadmium(II) nitrate (1 mmol) was poured into the tube without mixing the two solutions.
Abstract: C28H36CCI2N4O14, triclinic, PI (No. 2), a = 6.2028(7) Ä, b = 8.253(1) Ä, с = 17.592(2) Ä, α = 94.295(1)°, β = 100.153(1)°, γ = 112.072(4)°, V = 811.6 Ä, Ζ = 1, R0(F) = 0.044, wRzt(F) = 0.089, Τ = 273 К. * Correspondence author (e-mail: ki taga@sbchem.kyoto-u.ac. jn) Source of material An aqueous solution (10 ml) of sodium p-aminobenzoate (2 mmol) was transferred to a test tube, then a methanolic solution (10 ml) of cadmium(II) nitrate (1 mmol) was poured into the tube without mixing the two solutions. Colourless crystals were obtained after one week.

23 citations


Journal ArticleDOI
TL;DR: In this paper, the lattice parameters were determined from the least-squares refinement of the 2Θ values of 54 reflections (18° < 2 Θ < 100°, powder data).
Abstract: BagGe43, cubic, Pmln (No. 223), a = 10.6565(2)Ä,V= 1210.2 Ä, Z= 1, R&l(F) = 0.036, wRrei(F) = 0.055, T= 293 K. Source of material BasGe43 was prepared as single phase by melting the elements in an open glassy carbon crucible (HF furnace, argon atmosphere) and annealing at 1068 Κ (6 d). The single crystals were obtained from the as-cast sample. The substance is silvery metallic, brittle, relatively stable in air and moisture. EDX analysis of bulk samples resulted in the chemical composition Ba8.o(i)Ge42.9(i). Experimental details The lattice parameters were determined from the least-squares refinement of the 2Θ values of 54 reflections (18° < 2Θ < 100°, powder data). The X-ray powder data were obtained on the sample with nominal composition BasGe43 (λ(ΟιΚαι) = 1.540598 Ä; LaB6 standard, a = 4.15695(6) Ä). Discussion Ba8Ge43 was first obtained as a by-product of the decomposition of Ba3Ge4C2 [ 1 ] at 1123 Κ (1 h) under high pressure (ca. 40 kb). The BagGe43 structure (upper part of the figure) belongs to the clathrate-I type with Pearson symbol cP(54-3). Refined occupancies of Ge( 1), Ge(31) and Ge(32) positions resulted in the chemical composition BagGe42.93(5). Only the Ge(l) site is deficient in germanium. Consequently, the neighbouring Ge(3) position splits into the two near sites Ge(31) and Ge(32) (Table 2). The latter occurrs only if Ge(l) is empty. Similar results were obtained for the A8Sn44a2 clathrates, A = K, Rb, Cs [2,3]. A short range ordered model of the vacancies (•) in the germanium environment of Ba(2) atoms is shown in the lower part of the figure (atomic distances in Ä). The investigation of the possible long range ordering in long time annealed samples is in progress. Per formula unit, 31 germanium atoms are fourfold bonded (4b) and 12 germanium atoms in the Ge(31) sites are threefold bonded (3b). The compound may be formulated as (Ba)8((3b)Ge-)i2((4b)Ge°)3i(4e-). According to this, BagGc43D3 is a Zintl phase with a few electrons in not localized antibonding states of the network or in conduction bands. Semimetallic or metallic properties are expected [4, 5], Table 1. Data collection and handling. Crystal: silvery metallic, platelike, size 0 . 0 2 x 0 . 1 5 x 0 . 2 5 mm Wavelength: Mo Ka radiation (0.71073 Ä) μ: 326.16 cm\" Diffractometer, scan mode: Nicolet R3m/V, ω 2Gmax: 55.04° N(hkl)measured, N(hkl)unique: 1892,273 Criterion for /0bs, N(hkl)gL. /obs > 2 <7(/obsJ, 209 N(param)Kiined'· 19 Programs: SHELXL-97 [6], ATOMS [7] Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site Occ. χ y ζ fiso Ge(31) 24k 0.505(4) 0 Ge(32) 24* 0.495 0 0.3073(3) 0.1124(3) 0.0133(8) 0.3332(3) 0.1314(3) 0.0190(9) * Correspondence author (e-mail: carrillo@cpfs.mpg.de)

20 citations


Journal ArticleDOI
TL;DR: In this paper, a single crystal of Cu3VSe4 was obtained from a stoichiometric mixture of the powdered elements (quoted purity 99.99%) which was sealed into a silica tube at 10~ Pa.
Abstract: Cu 3Se 4V, cubic, P43m (No. 215), a = 5.5636(5) Ä, V = 172.2 Ä , Ζ = 1, R&(F) = 0.03 ], wR(F) = 0.031, Τ = 294 К. Source of material Single crystals of Cu3VSe4 were obtained from a stoichiometric mixture of the powdered elements (quoted purity 99.99%) which was sealed into a silica tube at 10~ Pa. The sample was annealed at 873 К for 6 weeks and allowed to come to ambient temperature at a constant rate of 2 К h _ l . Discussion The present single crystal investigation confirms an earlier qualitative assignment [ 1 ] of Cu3VSe4 to the sulvanite [2] structure type which was concluded f rom powder diffraction data. The structure is built up by edge sharing tetrahedra. In the polyhedral representation of the structure the VSe4 and CuSe4 tetrahedra are distinguished by black and dotted faces, respectively. V is in a strictly regular chalcogen coordination, the bond length calculates as 2.357( 1) Ä. The bond angles within the CuSe4 tetrahedron (which has Civ symmetry) show only minor deviations f rom the ideal value; the C u — S e bond length is 2.392(1) A. Cu3VSe4 may Table 2. Atomic coordinates and displacement parameters (in Ä).

20 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a 3D reconstruction of the 3D tetrahedra from a double-deserted water sample, showing that the ZnC-C bond length ranges from 1.251 A to 1.274 A and the angles O C O are averaged at 120.9° to 120.8°.
Abstract: C 5 H 6 0 4 Z n , monoc l in ic , P\\2!c\\ (No . 13), a = 13 .933(2) A , b = 4 .782(1) A , c = 9 .281(2) A , f> = 90.62(1)° , V= 6 1 8 . 3 A 3 , Z = 4, Rgt(F) = 0 .037 , wRTef(F) = 0 .109, T= 2 9 3 K. Source of material T h e c o m p o u n d w a s syn thes i zed by t he r eac t i on of 0 . 5 0 g (3 .78 m m o l ) glutar ic acid wi th an excess of f r e s h Z n C C b in 15 ml of double-des t i l l ed water . Unreac t ed ZnCC>3 w a s r e m o v e d and the f i l t ra te w a s m a i n t a i n e d at r o o m t e m p e r a t u r e . Co lo r l e s s pla tel ike crys ta ls w e r e g r o w n by s low evapora t ion f o r several weeks . Discussion T h e Z n a toms are te t rahedral ly coord ina ted (as in z inc succ ina te [1]) by fou r ca rboxy l O a toms of d i f fe ren t l igands which br idge fou r Z n a t o m s to a 3 D ne twork ^ [ Z n i C s H f i O ^ M ] , The ZnC>4 tetrahedra are sl ightly distorted with d{Zn—O) = 1.952 A 1.961 A and Z ( O Z n O ) = 98.9° 116.1°. T h e C — O b o n d lengths vary f r o m 1.251 A to 1.274 A and the angles O C O are averaged at 120.9(3)°. T h e m e a n C — C bond length is about 1.516 A and the C C C bond ang les range f r o m 110.0° to 115.8°. The br idg ing func t ion of the glutara te l igands is d i f fe ren t f r o m tha t in the t e t r aaquag lu t a r a tomanganese ( I I ) , M n ( C s H 6 0 4 ) ( H 2 0 ) 4 , w h e r e the te rminal ca rboxy l g roup on one end par t ic ipates in b r idg ing t w o M n a toms [2], Table 1. Data collection and handling. Crystal: colorless, thin plate, size 0 .09x0 .40x0 .51 mm Wavelength: Mo Ka radiation (0.71073 A) (i: 39.15 cm\" 1 Diffractometer, scan mode: Bruker P4, 9/29 2Qmax: 55° WlWjmcasurcd, N(hkl imiifa1945, 1368 Criterion for /0bs, N(hkl)gl: /obs > 2 CTf/obs), 1173 N(param)renaed94 Programs: SHELXS-97 [3], SHELXL-97 [4| ATOMS [5] Table 2. Atomic coordinates and displacement parameters (in A\"). Atom Site X y z t/iso H(2A) 4« 0.391(4) -0.40(1) -0.402(6) 0.04(1) H(2B) 4 g 0.454(4) -0.14(1) -0.404(5) 0.04(1) H(3) 4« 0.471(5) -0.57(1) -0.169(8) 0.07(2) H(5A) 4« 0.930(4) 0.25(1) -0.120(6) 0.06(2) H(5B) 4 g 0.109(5) 0.27(2) -0.228(8) 0.08(2) H(6) 4 g -0.035(3) 0.68(1) -0.183(5) 0.03(1) * Correspondence author (e-mail: zhengcm@nbu.edu.cn)

15 citations


Journal ArticleDOI
TL;DR: BrO12P3Sr5, hexagonal, P63/m (No. 176), a = 9.972, c = 7.342, V = 621.7, T = 293 K as mentioned in this paper.
Abstract: BrO12P3Sr5, hexagonal, P63/m (No. 176), a = 9.972(1) A, c = 7.214(1) A, V = 621.3 A3, Z = 2, Rgt(F) = 0.042, wRall(F) = 0.024, T = 293 K. Ba5BrO12P3, hexagonal, P63/m (No. 176), a = 10.342(2) A, c = 7.673(2) A, V = 710.7 A3, Z = 2, Rgt(F) = 0.022, wRall(F) = 0.015, T = 293 K.

12 citations


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper synthesized the first monoclinic compound, C4H12N1O8, from succinic acid with an excess of fresh N1CO3 in 50 ml twice-destilled water.
Abstract: C4H12N1O8, monoclinic, P\\2\\!c\\ (No. 14), a = 7.395(1) A, b = 14.713(3) А, с = 7.702(2) Ä, β = 99.74(2)°, V= 825.9 A, Ζ = 4, Rgt(F) = 0.044, wR(F) = 0.118, Τ = 293 К. Source of material The title compound was synthesized by the reaction of 0.5 g (4.23 mmol) succinic acid with an excess of fresh N1CO3 in 50 ml twice-destilled water, followed by removing the unreacted N1CO3. Pale green crystals grew from the filtrate at room temperature after slow evaporation for several days. Discussion In the crystal structure, the Ni atom is octahedrally coordinated by two О atoms of two bridging OOC-CH2-CH2-COO anions in trans positions and four О atoms of water molecules with t/(Ni—O) = 2.054 Ä 2.098 Ä. The chains J[Ni(H20)4(C4H404)2/2] run parallel to [101] and are held together by hydrogen bonds with d(O-O) = 2.704 Ä 2.965 Ä. One terminal carboxyl group is twisted by 78.3(3)° against the plane defined by the other carbon and oxygen atoms of the dicarboxylate anion yielding stronger intra-chain hydrogen bonds between water molecules and the non-coordinated carboxyl О atom (d(O --O) = 2.606 Ä 2.636 Ä). The С—О bond lengths of the coordinated О atoms (1.275 A -1 .279 A) are significantly longer than those of the non-coordinated О atoms (1.249 A 1.256 A). The O-C-O angles are about 123.4(1)°. TheC—С bond lenghts range from 1.515Ä to 1.518Ä and the C-C-C angles from 112.7° to 113.5°. Table 1. Data collection and handling. Crystal: pale green block, size 0.35 χ 0.47 χ 0.62 mm Wavelength: Mo Ka radiation (0.71073 A) μ: 23.65 cm\" 1 Diffractometer, scan mode: Bruker P4, Θ/2Θ 20max: 55° N(hkl)mcasurcd, N(hkl)unique: 2492,1890 Criterion for /0bs, N(hkl)gt: U s > 2 σ(/0bs), 1762 N(param)K fined: 121 Programs: SHELXS-97 [1], SHELXL-97 [2J Table 2. Atomic coordinates and displacement parameters (in A\"). Atom Site X У ζ ί/iso H(2A) 4e 0.2776 0.3151 -0 .2690 0.046(5) H(2B) 4e 0.4386 0.3047 -0 .3762 0.046(5) H(3A) 4e 0.3786 0.4666 -0 .1983 0.046(5) H(3B) 4e 0.5486 0.4477 -0 .2899 0.046(5) H(5A) 4e 0.7362 0.4245 0.3928 0.064(5) H(5B) 4e 0.6343 0.3640 0.2963 0.064(5) H(6A) 4e 1.1177 0.2831 -0 .0022 0.064(5) H(6B) 4e 1.2201 0.3587 0.0541 0.064(5) H(7A) 4e 0.8339 0.1853 0.2620 0.064(5) H(7B) 4e 0.8202 0.1950 0.0711 0.064(5) H(8A) 4e 0.9736 0.5382 0.1419 0.064(5) H(8B) 4e 1.0933 0.5010 0.2781 0.064(5) * Correspondence author (e-mail: zhengcm@nbu.edu.cn) 158 Caien«-tetraaquasuccinat0-O,O'-nickel(II) Table 3. Atomic coordinates and displacement parameters (in Ä). Atom Site X У ζ U π t/22 U33 U12 СЛз и2ъ Ni 4e 0.92799(4) 0.35580(2) 0.18803(4) 0.0278(3) 0.0320(3) 0.0195(3) -0.0005(1) -0.0020(2) 0.0011(1) 0(1) 4e 0.1283(3) 0.3318(2) -0.5971(3) 0.036(1) 0.036(1) 0.0256(9) -0.0014(8) -0.0084(8) 0.0009(8) 0(2) 4e 0.2392(3) 0.4706(1) -0.5327(3) 0.051(1) 0.036(1) 0.028(1) -0.0038(9) -0.0109(9) 0.0015(8) 0(3) 4e 0.7397(3) 0.3718(2) -0.0401(3) 0.0272(9) 0.052(1) 0.022(1) 0.0045(8) -0.0039(7) 0.0022(8) 0(4) 4e 0.4812(3) 0.3672(2) 0.0721(3) 0.030(1) 0.054(1) 0.028(1) -0.0040(8) -0.0003(8) -0.0001(8) 0(5) 4e 0.7350(3) 0.3695(1) 0.3571(3) 0.033(1) 0.0353(9) 0.024(1) 0.0014(7) 0.0000(7) 0.0009(7) 0(6) 4e 1.1137(3) 0.3421(1) 0.0192(3) 0.0291(9) 0.039(1) 0.028(1) 0.0000(8) 0.0023(8) -0.0023(7) 0(7) 4e 0.8718(3) 0.2178(1) 0.1802(3) 0.047(1) 0.035(1) 0.0243(9) -0.0081(9) 0.0006(7) -0.0006(7) 0(8) 4e 0.9743(3) 0.4935(2) 0.2013(3) 0.046(1) 0.034(1) 0.034(1) -0.0033(9) -0.0062(8) 0.0065(8) C(l) 4e 0.2330(4) 0.3876(2) -0.5002(3) 0.029(1) 0.037(1) 0.020(1) 0.001(1) -0.0021(9) -0.0010(9) C(2) 4e 0.3540(5) 0.3478(2) -0.3385(4) 0.041(2) 0.036(1) 0.024(1) -0.001(1) -0.007(1) 0.001(1) C(3) 4e 0.4623(4) 0.4197(2) -0.2243(4) 0.035(1) 0.036(1) 0.026(1) -0.001(1) -0.008(1) 0.003(1) C(4) 4e 0.5669(4) 0.3828(2) -0.0522(3) 0.030(1) 0.031(1) 0.024(1) -0.001(1) -0.0047(9) -0.0010(9) Acknowledgments. The project was sponsered by the Scientific Research Foundation for the returned Overseas Chinese Scholars, State Educational Ministry and the Bruker P4 diffractometer was purchased by the generous support of Ningbo Scientific-Technical Commision and Ningbo Eucational Committee. References 1. Sheldrick, G. M.: Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. A46 (1990) 467-473. 2. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

12 citations





Journal ArticleDOI
TL;DR: In this paper, the authors describe the phase pure Bi2Se309, which is one of six at room temperature thermodynamically stable phases on the quasibinary line Bi203-SeC>2.
Abstract: Bi209Se3, monoclinic, P12i/nl (No. 14), a = 13.491(1) Ä, b = 4.675 Ä, c = 14.961(1) Ä, β = 115.164(4)°, V= 854.1 Ä, Ζ = 4, R(F) = 0.039, wRref(F) = 0.095, T= 293 K. Source of material The title compound is one of six at room temperature thermodynamically stable phases on the quasibinary line Bi203-SeC>2. The thermical decomposition gives solid Bi2SeOj and gaseous SeC>2 in the measureable region from 623 Κ to 773 Κ [1]. Bi2Se309 decomposes peritectical in solid Bi2SeOs and Se02-rich melt at 853 Κ ± 5 K. The decomposition pressure arises at this point 3 atm. Bi2Se309 coexist in the O-poorer region with Bi2Se05,s + Sei at the one side and Bi2Se40n,s and Sei on the other side [2-4], Phase pure Bi2Se309 were obtained by sintering of stoichiometric mixtures of B12O3 and SeCh at 623 K. Single crystals are prepared by chemical transport reaction with BiBr3 or Βγ2· Phase pure Bi2Se309 was closed in evacuated quarz tubes with some mg BiBr3 or Br2 and transported in a temperature gradient from 773 Κ to 673 K. The transport rate in ampouls of 15 cm length and 1.5 cm diameter arises 0.1 mg/h. The crystals are clear prisms of 1-2 mm length. We understud the transport simultanously to the above thermal decomposition via: Bi2Se309,s + Br2,g = 2BiSe03Brg + Se02,g + l/202 ,g (1) and Bi2Se3C>9,s + BiBr3;g = 3BiSe03Brg . (2) For the existence of gaseous BiSeCbBr see [5], Discussion The structure of Bi2Se309 include two distorted, slightly different octahedra [Bi(l)06]~ and [Bi(2)Oö]" (bond lengths 2.247Ä to 2.516 Ä and 2.257 Ä to 2.563 Ä, respectively) as well as the trigonal-pyramidal units [ S e ( l ) 0 3 ] 2 , [Se(2)C>3]" and [Se(3)03] . Oxygen atoms linked by eddgesthe [Bi(l)C>6]" polyhedra (0(7)) and the [Bi(2)06]" polyhedra (0(2)) to chains along b-axis direction. Both chains are comer-linked over 0(8) in direction of α-axis and form Bi-0 double layers [B12O9] ~ along the a-b plane (see figure, left part, down). These layers include the both polyhedra [Se(l)03]" and [Se(3)03]~ (figure, left part, up) and generated theJ[Bi2Se209]~ layers as the characteristical layer unit of the Bi2(Se03)3 structure (see figure, middle part). Between these ^[Bi2Se209]~ layers enclosed a week [Se(2)03]" layer, bonded to the main layers over Bi(l)-0(4)Se(2)-0(3)-Bi(2) (right part in the figure). Table 1. Data collection and handling. Crystal: colourless, clear prism, size 0.04 χ 0.07 χ 0.25 mm Wavelength: Mo Ka radiation (0.71073 Ä) μ: 521.81 cm" 1 Diffractometer, scan mode: Enraf-Nonius CAD4, ω/2θ 20jj;-ix • 55.98° N(hkl)measured, AT(/lW)Unique: 4266,2057 Criterion for /obs, N(hkl)gc. /obs > 2 a(lobs), 1763 N(param)Kfmed: 128 Programs: SHELXS-97 [6], SHELXL-97 [7], DIAMOND [8] * Correspondence author (e-mail: otto.rademacher@chemie.tu-dresden.de) Unauthenticated Download Date | 9/9/17 5:10 AM 340 Bismuth selenite Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site X ζ Uu t / 2 2 t / 3 3 t / 1 2 t / 1 3 t / 2 3 Bi(l) 4e 0.64092(3) 0.13774(8) 0.80963(3) 0.0116(2) 0.0161(2) 0.0231(2) 0.0004(1) 0.0082(2) 0.0001(1) Bi(2) 4e 0.80771(3) 0.13518(7) 0.15550(3) 0.0122(2) 0.0156(2) 0.0212(2) 0.0002(1) 0.0096(2) 0.0003(1) Se(l) 4e 0.93979(8) 0.0942(2) 0.86907(7) 0.0111(5) 0.0156(4) 0.0202(4) 0.0008(4) 0.0074(4) 0.0003(3) Se(2) 4e 0.68934(8) 0.1173(2) 0.51830(7) 0.0127(5) 0.0159(5) 0.0207(4) 0.0012(4) 0.0085(4) 0.0001(3) Se(3) 4e 0.55426(8) 0.2142(2) 0.12201(7) 0.0107(5) 0.0199(5) 0.0246(5) 0.0003(4) 0.0101(4) 0.0002(4) 0(1) 4e 0.4295(7) 0.052(2) 0.3426(5) 0.021(4) 0.019(3) 0.026(3) -0.002(3) 0.008(3) -0.002(3) 0(2) 4e 0.1728(6) 0.153(2) 0.7170(5) 0.013(4) 0.027(4) 0.025(3) 0.003(3) 0.010(3) 0.006(3) 0(3) 4e 0.6991(7) 0.197(2) 0.4119(5) 0.024(4) 0.021(4) 0.027(3) 0.000(3) 0.012(3) 0.002(3) 0(4) 4e 0.8188(6) 0.169(2) 0.6072(6) 0.013(4) 0.023(4) 0.030(4) 0.001(3) 0.004(3) 0.000(3) 0(5) 4e 0.4739(7) 0.059(2) 0.8193(6) 0.026(4) 0.029(4) 0.032(4) 0.000(4) 0.019(3) 0.004(3) 0(6) 4e 0.6232(6) 0.051(2) 0.0652(5) 0.014(4) 0.040(4) 0.023(3) -0.007(3) 0.012(3) -0.012(3) 0(7) 4e 0.1883(6) 0.035(2) 0.2001(5) 0.010(3) 0.018(3) 0.028(3) 0.002(3) 0.011(3) -0.002(3) 0(8) 4e 0.0041(6) 0.031(2) 0.2064(5) 0.010(3) 0.026(4) 0.031(3) 0.001(3) 0.011(3) -0.004(3) 0(9) 4e 0.3110(6) 0.246(2) 0.4903(5) 0.023(4) 0.016(3) 0.022(3) 0.000(3) 0.009(3) 0.003(3)

Journal ArticleDOI
TL;DR: In this article, an isotype of RbV[BP20g(0H)] was synthesized under mild hydrothermal conditions from mixtures of a 50 wt.% aqueous solution of rbOH, VCI3, H3BO3 and H3PO4 (85%) in the molar ratio 1:1:1.2 (conc. 0.100, wRKf(F ) = 0.3296(4) k,c = 9.7 k,Z = 4,Rgl(F
Abstract: BH09P2RbV, monoclinic, P\\2\\lc\\ (No. 14), a = 9.3789(5) Ä, b = 8.3296(4) k,c = 9.6701(3) Ä, β = 102.0781(8)°, V =738.7 k,Z = 4,Rgl(F) : Τ =293 Κ. 0.100, wRKf(F ) = 0.111, Source of material RbV[BP20g(0H)] was prepared under mild hydrothermal conditions from mixtures of a 50 wt.% aqueous solution of RbOH, VCI3, H3BO3 and H3PO4 (85%) in the molar ratio 1:1:1:2 (conc. solution, pH 0-1,7.5 g 16 g total weight). The syntheses were carried in teflon autoclaves (T = 438 K, three days) under autogenous pressure. The chemical composition was confirmed by ICP-AES and EDX analyses, the water content was determined by thermogravimetric measurements. FT-IR spectroscopic investigations show the presence of OH groups and prove the absence of hydrogen bonds. Discussion RbV[BP208(0H)] (hydrated borophosphate, B:P < 1; [1]) is an isotypeofRbFe[BP208(OH)] [2] and CsFe[BP208(0H)] [3]. The anionic partial structure contains open-branched vierer-einfach chains [BP208(0H)]~, which are formed by alternating hydrogenborate and phosphate tetrahedra sharing common corners (figure right). Bond lengths and angles within the anionic chains are consistent with related borophosphates (see [1-3] and refs. therein). V is in an octahedral coordination by oxygen sites (V05(0H)) of three neighbouring tetrahedral chains. By this, an overall three-dimensional linkage of tetrahedra and octahedra ist established. Rb is irregularly coordinated by nine oxygen ligands and one OH group. RbV[BP208(0H)] is the second known borophosphate besides CsV3(H20)2[B2P40iö(0H)4] [4] with vanadium in the oxidation state +3. Table 1. Data collection and handling. Crystal: green, needle, size 0.01 χ 0.03 χ 0.12 mm Wavelength: Mo Ka radiation (0.71070 A) μ: 83.49 cm\" Diffractometer, scan mode: Rigaku AFC7-CCD, 0 < φ < 360°, Δφ = 0.5°, 60 -ω-scan, Δω = 0.5 χ = 90° 26max: 59.5° N(hkl)mcasured, NihkOunlquc· 9165, 1672 Criterion for /0bs, N(hkl)gt /obs > 2 of/obs), 1584 N(param)refmeä'. 131 Programs: SHELXS-97 [5], SHELXL-97 [6], DIAMOND [7] * Correspondence author (e-mail: engelhar@cpfs.mpg.de) 204 R b V [ B P 2 O s ( O H ) ] Table 2. Atomic coordinates and displacement parameters (in Ä).

Journal ArticleDOI
TL;DR: In this paper, the title compound was synthesized by the reaction of 0.5 g (4.23 mmol) succinic acid with an excess of fresh C0CO3 in 50 ml double destilled water, followed by filtrating the unreacted C 0CO3 out.
Abstract: C4Hi2Co08, monoclinic, P12i/cl (No. 14), a = 7.397(4) Ä, b = 14.792(5) Ä, с = 7.775(4) Ä, β = 99.73(3)°, V= 838.5 Ä, Ζ = 4, Rgt(F) = 0.042, wR(F) = 0.111, Τ = 293 К. Source of material The title compound was synthesized by the reaction of 0.5 g (4.23 mmol) succinic acid with an excess of fresh C0CO3 in 50 ml double destilled water, followed by filtrating the unreacted C0CO3 out. Rose-colored rhombohedral crystals grew at room temperature after slow evaporation for several days. Discussion The title compound is isostructural with Ni(C4H404)(H20)4 [1]. In the crystal structure, the Co atom is octahedrally coordinated by two О atoms of two bridging OOC-CH2-CH2-COO anions in trans positions and four О atoms of water molecules with d(Cо—O) = 2.094 Ä 2.138 Ä. The chains ^ С З Д О ^ Ь Ш О г / г ] run parallel to [101] and are held together by hydrogen bonds with d(O-O) = 2.685 Ä 2.993 Ä. One terminal carboxyl group is twisted by 78.4(4)° relative to the plane defined by the other carbon and oxygen atoms of the dicarboxylate anion yielding stronger intra-chain hydrogen bonds between water molecules and the non-coordinated carboxyl О atom (rf(O--O) = 2.625 Ä 2.652 Ä). The С—О bond lengths for the coordinated О atoms range from 1.269 Ä 1.273 Ä, while those for the non-coordinated О atoms vary from 1.241 Ä to 1.255 Ä. Within the experimental limitation, all С—С bonds are of the value of 1.513(1) Ä and < ( 0 C 0 ) and <(C-C-C) bond angles are averaged at 123.5(2)° and 114.0(5)°, respectively. Table 1. Data collection and handling. Crystal: rose-colored rhombohedron, size 0.44 χ 0.44 χ 0.55 mm Wavelength: Mo К a radiation (0.71073 A) μ: 20.63 cm\"' Diffractometer, scan mode: Bruker P4, Θ/2Θ 26max • 49.98° N(hkl)msasured, N(hkl)unique: 1985, 1472 Criterion fo r /0bs, N(hkl)gt: Io > 2 σ(/0), 1364 N(param)re fined: 128 Programs: SHELXS-97 [2], SHELXL-97 [3] Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site X У ζ c / i s o H(2A) Ae 0.2774 0.3159 -0.2713 0.061(6) H(2B) Ae 0.4390 0.3068 -0.3770 0.061(6) H(3A) Ae 0.3771 0.4660 -0.1973 0.061(6) H(3B) Ae 0.5474 0.4483 -0.2877 0.061(6) H(5A) Ae 0.6259 0.3776 0.3005 0.07(1) H(5B) Ae 0.7369 0.4243 0.4011 0.09(2) H(6A) Ae 1.2319 0.3519 0.0335 0.06(1) H(6B) Ae 1.1153 0.2837 -0.0224 0.06(1) H(7A) Ae 0.8339 0.1853 0.2620 0.045(9) H(7B) Ae 0.8202 0.1950 0.0711 0.10(2) H(8A) Ae 0.9895 0.5388 0.1347 0.05(1) H(8B) Ae 1.0782 0.5046 0.2803 0.08(1) * Correspondence author (e-mail: zhengcm@nbu.edu.cn) 160 Cafena-tetraaquasuccinato-0,0'-cobalt(II) Table 3. Atomic coordinates and displacement parameters (in Ä). Atom Site X У ζ Uu ί/22 t/зз ί/12 t/13 t/23 Co 4e 0.92860(5) 0.35550(2) 0.18764(5) 0.0328(3) 0.0311(3) 0.0280(3) -0.0008(1) 0.0025(2) 0.0010(1) 0(1) 4e 0.1304(3) 0.3327(2) -0.5941(3) 0.041(1) 0.034(1) 0.034(1) -0.0026(9) -0.0039(9) 0.0003(8) 0(2) 4e 0.2400(3) 0.4704(1) -0.5301(3) 0.053(1) 0.037(1) 0.038(1) -0.0038(9) -0.0076(9) 0.0016(9) 0(3) 4e 0.7375(3) 0.3715(2) -0.0421(3) 0.033(1) 0.052(1) 0.030(1) 0.0035(9) 0.0015(9) 0.0015(9) 0(4) 4e 0.4804(3) 0.3674(2) 0.0695(3) 0.034(1) 0.052(1) 0.036(1) -0.0031(8) 0.0028(9) 0.0015(9) 0(5) 4e 0.7310(3) 0.3706(1) 0.3570(3) 0.038(1) 0.036(1) 0.035(1) 0.0014(8) 0.0025(9) -0.0003(8) 0(6) 4e 1.1164(3) 0.3401(1) 0.0187(3) 0.034(1) 0.038(1) 0.038(1) -0.0007(8) 0.0060(9) -0.0039(9) 0(7) 4e 0.8656(3) 0.2167(1) 0.1796(3) 0.055(1) 0.034(1) 0.033(1) -0.0083(9) 0.0061(8) -0.0008(8) 0(8) 4e 0.9780(3) 0.4949(2) 0.2010(3) 0.051(1) 0.035(1) 0.043(1) -0.0030(9) -0.0035(9) 0.0064(9) C( l ) 4e 0.2333(4) 0.3884(2) -0.4984(4) 0.035(1) 0.034(2) 0.030(1) 0.000(1) 0.005(1) -0.002(1) C(2) 4e 0.3538(5) 0.3493(2) -0.3392(4) 0.044(2) 0.036(2) 0.031(2) -0.000(1) -0.001(1) -0.000(1) C(3) 4e 0.4612(4) 0.4197(2) -0.2236(4) 0.037(1) 0.037(2) 0.036(2) 0.000(1) -0.003(1) 0.003(1) C(4) 4e 0.5660(4) 0.3832(2) -0.0536(4) 0.037(1) 0.029(1) 0.031(1) 0.000(1) 0.001(1) -0.001(1) Acknowledgments. The project was sponsered by the Scientific Research Foundation for the returned Overseas Chinese Scholars, State Educational Ministry and the Bruker P4 diffractometer was purchased by the generous support of Ningbo Scientific-Technical Commision and Ningbo Eucational Committee. References 1. Zheng, Y.-Q.; Lin, J.-L.: Crystal structure of caiena-tetraaquasuccinato-0,0'-nickeIt(II), Ni(C4H404)(H20)4. Z. Kristallogr. NCS 215 (2000)157-158. 2. Sheldrick, G. M.: Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. A46 (1990) 467-473. 2. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

Journal ArticleDOI
TL;DR: In this paper, a dark brown solution of СиВг was prepared by reacting concentrated aqueous HBr with a slightly substoichiometric amount of CuO.
Abstract: Br2Cu, monoclinic, C12/ml (No. 12), a = 7.2096(5) Ä, b = 3.4742(2) Ä, с = 7.0475(6) Ä, β = 119.610(5)°, V = 1 5 3 . 5 Ä 3 , Z = 2, Rsl(F) = 0.049, wR(F) = 0.124, Τ = 293 К. Source of material A dark brown solution of СиВгг was prepared by reacting concentrated aqueous HBr with a slightly substoichiometric amount of CuO. Thin black platelets (dark brown in transmission) of СиВгг of several cm in size formed upon slow evaporation at 328 К within 6 weeks. The crystals are extremely soft, so that cutting or even touching makes them unsuitable for structure determinations. The top of a lath shaped crystal had to be used for the data collection. Table 2. Atomic coordinates and displacement parameters (in Ä).


Journal ArticleDOI
TL;DR: In this paper, the crystal structure of Cs4Ge4Sio is characterized by the formation of discrete adamantane-like complex anions built up by four corner sharing GeS4 tetrahedra.
Abstract: Cs4Ge4Sio, monoclinic, C12/cl (No. 15), a = 15.714(3) Ä, b = 15.858(2) А, с = 9.491(2) Ä, β = 106.74(2)°, V = 2264.9 Ä, Ζ = 4, % ( F ) = 0.027, wR(F) = 0.025, T= 294 K. Source of material The title compound was prepared by reacting CS2S (627 mg = 2.104 mmol), obtained from high purity elements in liquid ammonia with GeS2 (573 mg = 4.19 mmol) at 1123 К in an evacuated silica ampoule, allowing the melt to attain ambient temperature at a controlled rate of 2 К min\". The reaction product was of homogeneous appearance and consisted of polyhedral crystals of globular shape. Discussion The crystal structure of Cs4Ge4S ю is characterized by the formation of discrete adamantane like complex anions [Ge4Sio]~ built up by four corner sharing GeS4 tetrahedra. Bonds to bridging sulfur atoms lie within a narrow range (d(Ge—S)b from 2.223(2) A to 2.245(2) Ä). Bond lengths for the terminal sulfur atoms are 2.113Äand2.119Ä, respectively. The mean Ge—S bond length in the anion is 2.208 Ä, somewhat shorter than the sum of the crystal radii for tetracoordinate Ge and S (2.230 Ä) [1]. The atomic arrangement of Cs4Ge4Sio corresponds to Ba4Ga4Sio [2] with which it is isoelectronic. The crystal structure determination of Cs4Ge4Sio completes the series of chalcogenogermanates, A4Ge4Qio, (A = Na-Cs, Q = S, Se) all of which were found to contain adamantane type anions. Depending on the radius ratio r(A)/r(Q) three different structure types are adopted. Both sodium compounds, Na4Ge4Sio [3] and Na4Ge4Seio [4], are isostructural with Na4Si4Sio [3] while K4Ge4Seio crystallizes with an idiosyncratic structure [5]. K4Ge4Sio, Rb4Ge4Sio, Rb4Ge4Seio as well as Cs4Ge4Seio are isostructural and crystallize with the Ba4Ga4Sio type [6]. Cs4Ge4Sio characterized by the highest r(A)/r(Q~) value still follows this trend. On the other hand the compound with the lowest radius ratio, Na4Ge4Seio, is actually dimorphic. Its second modification is characterized by infinite anionic layers formed by corner sharing GeSe4 tetrahedra [7]. Table 1. Data collection and handling. Crystal: colourless, polyhedral, size 0.05 χ 0.05 χ 0.05 mm Wavelength: Mo Ka radiation (0.71073 Ä) μ: 123.58 cm\" 1 Diffractometer, scan mode: Enraf-Nonius CAD4, Θ/2Θ 2 0 m a x : 53.94\" N(hkl)measured, ЩЬк1)аЛщЖ\\ 2648, 2462 Criterion for /0bs, N(hkl)gt: /„bs > 3 o ( U s ) , 1 9 5 6 N(param) refined: 84 Programs: MolEN [8], ATOMS [9] Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site X У г U π Uli t/зз U,2 СЛз Un Cs( l ) 8 / 0.15335(3) 0.36379(3) 0.87171(5) 0.0380(2) 0.0346(2) 0.0305(2) -0.0083(2) 0.0083(2) 0.0004(2) Cs(2) 8 / 0.13530(3) 0.07036(3) 0.64501(5) 0.0374(2) 0.0373(2) 0.0328(2) -0.0006(2) 0.0151(1) -0.0082(2) Ge(l ) 8 / 0.10476(4) 0.36854(4) 0.39799(7) 0.0232(3) 0.0208(3) 0.0244(3) -0.0037(3) 0.0089(2) -0.0019(3) Ge(2) 8 / 0.43581(4) 0.29524(4) 0.87865(7) 0.0243(3) 0.0204(3) 0.0210(3) 0.0025(3) 0.0119(2) 0.0003(3) S( l ) 8 / 0.1694(1) 0.2855(1) 0.2654(2) 0.0239(7) 0.0302(9) 0.0326(8) -0.0013(7) 0.0119(6) -0.0054(7) S(2) 8 / 0.4580(1) 0.2169(1) 0.4718(2) 0.0329(8) 0.0285(8) 0.0227(7) -0.0089(7) 0.0117(6) -0.0035(7) * Correspondence author (e-mail: kurt.klepp@jk.uni-linz.ac.at) 8 Tetracesium decasulfidotetragermanate

Journal ArticleDOI
TL;DR: In this article, the structure of Zn(S2CNEt2)2 has been determined with the advantages of contemporary methods, and the title compound was prepared by reacting Zn (SC>4)2 with two molar equivalents of the sodium salt of the ligand.
Abstract: CioH2oN2S4Zn, monoclinic, P\\2\\ln\\ (No. 14), a = 9.814(3) A, b = 10.667(3) Ä, c = 15.655(4) Ä, β = 104.06(2)°, V = 1589.7 Ä, Ζ = 4, R&(F) = 0.023, wRIef(F) = 0.025, T= 173 K. Source of material The title compound was prepared by reacting Zn(SC>4)2 with two molar equivalents of the sodium salt of the ligand. The precipitate that formed was filtered off and crystals were obtained from the slow evaporation of a CHCI3 solution of the compound; mp 448 Κ -449 Κ. Discussion The structure of dimeric [Zn(S2CNEt2)2] [1,2] has been redetermined with the advantages of contemporary methods. The dimeric structure is centrosymmetric and features an 8-membered -[S-C-S-Zn-]2 ring in which two Zn atoms are bridged by two bidentate bridging dithiocarbamte ligands such that d{ Zn—S(3), S(4)i) are 2.3354(9) a and 2.3874(8) Ä, respectively; symmetry operation i: -x,—y, 1-z. The remaining ligands are chelating, forming slightly asymmetric Zn—S bonds; d(Zn—S(l), S(2)) 2.3488(10) Ä and 2.4433(9) Ä, respectively. Thus, the coordination geometry for Zn is distorted tetrahedral with weak intra-ring Zn—S(4) contacts of 2.824(1) Ä contributing to this distortion. The structure reported here is the common motif for Zn(S2CNR2)2 structures [3], Table 1. Data collection and handling. Crystal: pale-yellow block, size 0 .13x0 .18x0 .24 mm Wavelength: Mo Ka radiation (0.7107 Ä) μ: 20.52 cm\" 1 Diffractometer, scan mode: AFC7R, ω/2θ 26ma\\: 55.02° N(hkl)measured, N(hkl)unique: 6237, 3855 Criterion for /0bs, N(hkl)ei. U s > 3 af/obs), 2632 N(param) refined: 154 Programs: teXsan [4], DIRDIF92 [5], D1FABS [6] Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site X y ζ t/iso H(l) 4e 0.2767 0.3701 0.2536 0.039 H(2) 4e 0.1952 0.3943 0.1570 0.039 H(3) 4e 0.0210 0.4964 0.2132 0.046 H(4) 4e 0.1224 0.4873 0.3059 0.046 H(5) 4e 0.1631 0.5675 0.2332 0.046 H(6) 4e -0.0776 0.1920 0.1480 0.038 H(7) 4e -0.0330 0.3101 0.1037 0.038 H(8) 4e 0.1151 0.0859 0.1111 0.051 H(9) 4e -0.0070 0.1181 0.0307 0.051 H(10) 4e 0.1273 0.2004 0.0524 0.051 H( l l ) 4e 0.4111 -0.3498 0.6621 0.036 H(12) 4e 0.4349 -0.2123 0.6369 0.036 H(13) 4e 0.3574 -0.1359 0.7509 0.056 H(14) 4e 0.2934 -0.2641 0.7672 0.056 H(15) 4e 0.4551 -0.2462 0.7913 0.056 H(16) 4e 0.1657 -0.4044 0.6620 0.035 H(17) 4e 0.0517 -0.3555 0.5822 0.035 H(18) 4e 0.2757 -0.5095 0.5697 0.051 H(19) 4e 0.1709 -0.4541 0.4879 0.051 H(20) 4e 0.1195 -0.5507 0.5472 0.051 * e-mail: edward.tiekink@adelaide.edu.au) 446 Dimeric bis(/V,A'-diethyldithiocarbamato)zinc Table 3. Atomic coordinates and displacement parameters (in Ä). Atom Site X y ζ U n U22 t/33 Un U13 i /23 Zn 4e 0.11778(3) 0.07211(3) 0.44564(2) 0.0255(1) 0.0258(1) 0.0220(1) 0.0029(1) 0.00692(9) 0.0053(1) S(l) 4e 0.00957(6) 0.07188(5) 0.29432(3) 0.0290(3) 0.0224(3) 0.0238(3) -0.0042(2) 0.0074(2) 0.0007(2) S(2) 4e 0.23219(6) 0.24451(6) 0.38743(4) 0.0253(3) 0.0287(3) 0.0245(3) -0.0051(2) 0.0047(2) 0.0023(2) S(3) 4e 0.29293(6) -0.04008(5) 0.54350(4) 0.0249(3) 0.0223(3) 0.0354(3) -0.0036(2) -0.0017(2) 0.0073(2) S(4) 4e 0.02432(6) -0.17252(5) 0.47061(3) 0.0234(3) 0.0232(3) 0.0189(2) -0.0009(2) 0.0032(2) -0.0012(2) N(l) 4e 0.1018(2) 0.2668(2) 0.2175(1) 0.027(1) 0.026(1) 0.0225(9) -0.0022(8) 0.0078(7) 0.0039(8) N(2) 4e 0.2343(2) -0.2652(2) 0.5982(1) 0.0219(9) 0.0207(9) 0.0245(9) 0.0011(7) 0.0059(7) 0.0031(8) C(l) 4e 0.1128(2) 0.2024(2) 0.2913(1) 0.021(1) 0.020(1) 0.025(1) 0.0025(8) 0.0099(8) 0.0001(9) C(2) 4e 0.1862(3) 0.3810(2) 0.2154(2) 0.036(1) 0.033(1) 0.030(1) -0.010(1) 0.010(1) 0.010(1) C(3) 4e 0.1168(3) 0.4934(2) 0.2446(2) 0.037(1) 0.028(1) 0.047(2) -0.006(1) 0.004(1) 0.009(1) C(4) 4e -0.0006(3) 0.2349(2) 0.1346(1) 0.034(1) 0.035(1) 0.023(1) 0.002(1) 0.004(1) 0.006(1) C(5) 4e 0.0648(3) 0.1521(3) 0.0768(2) 0.053(2) 0.049(2) 0.027(1) -0.003(1) 0.012(1) -0.004(1) C(6) 4e 0.1888(2) -0.1696(2) 0.5454(1) 0.023(1) 0.021(1) 0.0197(9) 0.0015(8) 0.0079(8) -0.0021(9) C(7) 4e 0.3749(2) -0.2668(2) 0.6588(2) 0.025(1) 0.030(1) 0.033(1) 0.004(1) 0.0011(9) 0.012(1) C(8) 4e 0.3697(3) -0.2243(3) 0.7507(2) 0.043(2) 0.063(2) 0.027(1) -0.008(1) -0.004(1) 0.007(1) C(9) 4e 0.1481(2) -0.3770(2) 0.6026(2) 0.030(1) 0.023(1) 0.033(1) -0.002(1) 0.008(1) 0.009(1) C(10) 4e 0.1817(3) -0.4826(2) 0.5467(2) 0.035(1) 0.023(1) 0.069(2) -0.002(1) 0.013(1) -0.003(1) Acknowledgment. The Australian Research Council is thanked for support.

Journal ArticleDOI
TL;DR: In this paper, an excess of salicylic acid (55 mg, 4.00 mmol) in methanol (2 cm) was added to a solution of cadmium(II) salicylate (85 mg, 2.00 ml), and the mixture was recrystallized in dimethylformamide (DMF).
Abstract: C27H25CCIN3O7, triclinic, PI (No. 2), a = 8.743(1) Ä, b= 10.139(1) Ä, с = 16.218(1) Ä, α = 106.58(1)°, β = 100.77(1)°, γ = 100.79(1)°, V= 1308.7 Ä, Ζ = 2, Pm = 1.530 g em\", Rgt(F) = 0.050, wR(F) = 0.137, T= 293 K. Source of material An excess of salicylic acid (55 mg, 4.00 mmol) in methanol (2 cm) was added to a solution of cadmium(II) salicylate (85 mg, 2.00 mmol) in methanol (2 cm) . To this solution was added bipyridine (31 mg, 2.00 mmol). A precipitate was obtained which was filtered off and washed with methanol, then dried. The complex was recrystallised in dimethylformamide (DMF). Discussion The geometry about the Cd atom is very distorted cw-octahedral. The coordination is defined by two N atoms provided by the 2,2'-bipyridyl chelate, and by four О atoms: three provided by two salicylate anions (two and one bonds), the fourth provided by DMF ligand. The Cd—N distances are very similar (average = 2.34 Ä) and comparable with distances found in other bipyridine containing Cd complexes [1,2]. The distances betwen Cd and the oxygen atoms are the following: rf(Cd---041) = 2.304 Ä for the DMF, fiJ(Cd-032) = 2.365 Ä and d (Cd·-031) = 2.470 Ä for the first salicylate ligand and d(Cd022) = 2.246 Ä for the second. Beside that, there is a longer distance d(Cd-021) = 2.677 A with this latter giving a coordination of the type 6+1 [pentagonal bipyramidal environment]. The bond lengths and angles of the complexed salicylate ligands are normal. Table 1. Data collection and handling. Crystal: colourless parallelepiped, size 0.15 χ 0.20 χ 0.32mm Wavelength: Cu Ka radiation (1.54180 A) μ: 71.20 cm\" 1 Diffractometer, scan mode: Nonius-CAD4, ω/2θ 26max: 129.88° N(hkl)measUTcd, Ai(/!W)u„ique: 4551,4386 Criterion for 10ы, N(hkl)gi. /obs > 2 a(/0bs), 4188 N(param) refmed: 386 Programs: BP7C [3], SHELXS-86 [4], SHELXL-93 [5], CAMERON [6] * Correspondence author (e-mail: tomas@pharmacie.univ-paris5.fr) 114 C 2 7 H 2 5 C d N 3 0 7 Table 2. Atomic coordinates and displacement parameters (in Ä2). Table 2. Continued. Atom Site χ у ζ Vi s o Atom Site χ у г f/iso H(2) 21 0.2467(7) 1.1077(5) 0.4242(3) 0.095(4) H(3) 2i 0.131(1) 1.1932(6) 0.5381(3) 0.095 H(4) 2i -0.136(1) 1.1929(7) 0.5055(4) 0.095 H(5) 2 i -0.302(5) 1.075(7) 0.357(5) 0.095 H(6) 2i -0.411(8) 1.034(7) 0.226(4) 0.095 H(7) 2 i -0.548(5) 0.917(7) 0.068(5) 0.095 H(8) 2/ -0.394(8) 0.850(7) -0.030(3) 0.095 H(9) 2 i -0.115(7) 0.860(7) 0.025(4) 0.095 H(23) 2 i 0.2012(6) 1.3556(5) 0.1314(3) 0.095 H(24) 2 i 0.475(8) 1.664(6) 0.178(5) 0.095 H(25) 2 i 0.734(7) 1.724(5) 0.274(5) 0.095 H(26) 2 i 0.819(6) 1.581(7) 0.356(4) 0.095 H(27) 2 i 0.625(8) 1.339(6) 0.309(5) 0.095 H(33) 2i 0.4902(5) 0.8831(4) 0.4090(3) 0.095 H(34) 2 i 0.496(6) 0.665(7) 0.520(4) 0.095 H(35) 2i 0.275(8) 0.454(6) 0.493(4) 0.095 H(36) 2 i 0.045(6) 0.404(6) 0.373(5) 0.095 H(37) 2i 0.054(7) 0.533(8) 0.278(4) 0.095 H(41) 2 i 0.178(8) 0.654(7) 0.083(4) 0.095 H(431) 2 i 0.2077(9) 0.4661(6) -0.1224(4) 0.095 H(432) 2 i 0.1108(9) 0.4375(6) -0.0544(4) 0.095 H(433) 2 i 0.2989(9) 0.4936(6) -0.0238(4) 0.095 H(441) 2 i 0.1936(8) 0.6470(6) -0.1577(3) 0.095 H(442) 2i 0.2755(8) 0.7945(6) -0.0830(3) 0.095 H(443) 2 i 0.0872(8) 0.7404(6) -0.1140(3) 0.095 Table 3. Atomic coordinates and displacement parameters (in Ä2). Atom Site X У ζ υ и U22 ί/зз Un U i3 Un Cd(l) 2i 0.16394(2) 0.96396(2) 0.20968(1) 0.0404(2) 0.0392(2) 0.0337(2) 0.0109(1) 0.0125(1) 0.0070(1) N(l) 2 i 0.0496(4) 1.0544(3) 0.3262(2) 0.059(2) 0.039(2) 0.033(2) 0.011(1) 0.018(2) 0.003(1) C(2) 2/ 0.1381(7) 1.1066(5) 0.4114(3) 0.074(3) 0.051(2) 0.033(2) 0.014(2) 0.010(2) 0.003(2) C(3) 2i 0.070(1) 1.1580(6) 0.4794(3) 0.126(6) 0.060(3) 0.033(2) 0.032(3) 0.016(3) 0.003(2) C(4) 2i -0.089(1) 1.1570(7) 0.4598(4) 0.140(6) 0.086(4) 0.057(3) 0.055(4) 0.059(4) 0.017(3) C(5) 2 i -0.1817(8) 1.1030(7) 0.3725(4) 0.095(4) 0.082(4) 0.066(3) 0.046(3) 0.055(3) 0.029(3) C(I2) 2 i -0.1074(5) 1.0501(4) 0.3061(3) 0.056(2) 0.035(2) 0.044(2) 0.018(2) 0.028(2) 0.014(2) N(10) 2 i -0.1092(4) 0.9444(3) 0.1529(2) 0.037(2) 0.046(2) 0.039(2) 0.014(1) 0.010(1) 0.009(1) C(6) 2 i -0.3567(5) 0.9813(5) 0.1820(4) 0.043(2) 0.069(3) 0.071(3) 0.023(2) 0.023(2) 0.031(2) C(7) 2 i -0.4303(6) 0.9244(7) 0.0914(5) 0.041(2) 0.083(4) 0.085(4) 0.007(2) 0.005(2) 0.028(3) C(8) 2 i -0.3436(6) 0.8764(6) 0.0318(4) 0.054(3) 0.076(3) 0.058(3) 0.014(2) -0.001(2) 0.012(2) C(9) 2 i -0.1836(5) 0.8892(5) 0.0655(3) 0.052(2) 0.066(3) 0.040(2) 0.016(2) 0.003(2) 0.009(2) C ( l l ) 2 i -0.1952(5) 0.9901(4) 0.2105(3) 0.044(2) 0.038(2) 0.050(2) 0.011(2) 0.019(2) 0.017(2) 0 (32) 2 i 0.1101(5) 0.7424(4) 0.2337(2) 0.096(3) 0.057(2) 0.038(2) 0.023(2) 0.003(2) 0.013(1) C(2i) 2i 0.3361(6) 1.2308(4) 0.2156(3) 0.065(3) 0.041(2) 0.045(2) 0.014(2) 0.029(2) 0.010(2) 0 (21) 2 i 0.1968(5) 1.1992(4) 0.1637(3) 0.066(2) 0.066(2) 0.064(2) -0.002(2) 0.008(2) 0.013(2) C(22) 2 i 0.4491(6) 1.3715(4) 0.2319(3) 0.060(2) 0.037(2) 0.041(2) 0.010(2) 0.026(2) 0.007(2) 0 (22) 2i 0.3821(4) 1.1484(3) 0.2523(3) 0.063(2) 0.044(2) 0.090(2) 0.015(1) 0.031(2) 0.025(2) C(23) 2 i 0.4016(6) 1.4660(4) 0.1906(3) 0.073(3) 0.046(2) 0.049(2) 0.021(2) 0.029(2) 0.016(2) 0 (23) 2 i 0.2525(6) 1.4344(5) 0.1351(3) 0.096(3) 0.082(3) 0.077(3) 0.030(2) 0.018(2) 0.040(2) C(24) 2 i 0.5089(9) 1.5956(6) 0.2060(5) 0.104(5) 0.047(3) 0.075(4) 0.020(3) 0.046(3) 0.023(3) C(25) 2 i 0.6584(8) 1.6316(5) 0.2615(4) 0.102(4) 0.044(2) 0.079(4) -0.003(3) 0.051(3) 0.005(2) C(26) 2i 0.7061(7) 1.5402(6) 0.3053(4) 0.068(3) 0.064(3) 0.063(3) -0.005(2) 0.020(2) -0.004(2) C(27) 2 i 0.5999(6) 1.4097(5) 0.2887(3) 0.059(2) 0.053(2) 0.041(2) 0.009(2) 0.012(2) 0.008(2) C(31) 2 i 0.2365(6) 0.7741(4) 0.2938(3) 0.072(3) 0.044(2) 0.040(2) 0.023(2) 0.024(2) 0.013(2) 0 (31) 2 i 0.3471(5) 0.8854(4) 0.3102(3) 0.088(3) 0.058(2) 0.083(3) 0.023(2) 0.029(2) 0.040(2) C(32) 2 i 0.2582(6) 0.6833(4) 0.3510(3) 0.066(3) 0.041(2) 0.035(2) 0.023(2) 0.020(2) 0.011(2) C(33) 2 i 0.3892(5) 0.7229(4) 0.4239(3) 0.055(2) 0.045(2) 0.053(2) 0.016(2) 0.011(2) 0.010(2) 0 (33) 2 i 0.5092(5) 0.8420(4) 0.4451(3) 0.074(2) 0.063(2) 0.102(3) -0.001(2) -0.014(2) 0.030(2) C(34) 2 i 0.3966(7) 0.6399(6) 0.4795(4) 0.074(3) 0.068(3) 0.061(3) 0.024(3) 0.003(3) 0.026(3) C(35) 2 i 0.2799(8) 0.5200(6) 0.4614(4) 0.093(4) 0.074(3) 0.075(3) 0.031(3) 0.022(3) 0.044(3) C(36) 2 i 0.1517(9) 0.4761(7) 0.3865(5) 0.092(4) 0.062(3) 0.074(4) 0.009(3) 0.023(3) 0.031(3) C(37) 2 i 0.1399(6) 0.5588(5) 0.3331(3) 0.072(3) 0.051(2) 0.046(2) 0.009(2) 0.015(2) 0.013(2) C(41) 2 / 0.1784(5) 0.7126(5) 0.0438(3) 0.049(2) 0.055(2) 0.034(2) 0.012(2) 0.016(2) 0.004(2) 0 ( 4 ! ) 2 i 0.1714(4) 0.8381(3) 0.0683(2) 0.067(2) 0.055(2) 0.038(1) 0.021(1) 0.027(1) 0.006(1) N(42) 2 i 0.1877(5) 0.6437(4) -0.0372(2) 0.062(2) 0.055(2) 0.035(2) 0.009(2) 0.016(2) -0.001(1) C(43) 2 i 0.2026(9) 0.4978(6) -0.0615(4) 0.131(6) 0.062(3) 0.061(3) 0.030(3) 0.030(3) 0.000(3) C(44) 2 i 0.1858(8) 0.7121(6) -0.1035(3) 0.093(4) 0.078(3) 0.035(2) 0.008(3) 0.015(2) 0.008(2)

Journal ArticleDOI
TL;DR: In this article, the authors describe the structure of a monoclinic succinate, which consists of Na cations, H2O molecules and J[Cu(C4H404)4/2] anionic chains parallel to [001] which are held together by N cations and hydrogen bonds.
Abstract: C8H24CuNa2Oi6, monoclinic, P12]/cl (No. 14), a = 6.941(1) Ä, b = 20.688(2) Ä, с = 13.360(1) Ä, β = 93.046(7)°, V= 1915.7 Ä, Ζ = 4, Rgf(F) = 0.050, wR(F) = 0.130, Τ = 293 К. Source of material The title compound was prepared by dropwise adding 1.0 ml 1 Μ CuS04 to 50 ml 1M disodium succinate under constant stirring. The initail formed pale blue precipitate was filtered and the filtrate was then kept at room temperature. Blue, elongated plate-shaped crystals grew by slow evaporation after several weeks. Discussion The crystal structure consists of Na cations, H2O molecules and J[Cu(C4H404)4/2]~ anionic chains parallel to [001] which are held together by Na cations and hydrogen bonds. The Cu atom is square-planar coordinated by four carboxyl О atoms of different succinate groups with d(C\\i—О) = 1.933 Ä -1 .970 Ä, diagonal < ( 0 C u 0 ) = 174.4(3)° and non-diagonal < ( 0 C u 0 ) = 88.6° 91.5°. (Within experimental limitation, no deviation of Cu atom from the plane defined by four coordinating О atoms can be seen). The two crystallographically different succinate anions (C4H4O4)\" have nearly the same configuration with mean torsion angle of 63.5(3)° for C-C chain and serve as bidentate to form |JCu(C4H404)4/2]~ chains. The С—С distances vary from 1.508 A to 1.523 Ä and the C-C-C angles from 114.7° to 115.6°. The С—О distances are slightly longer for the copper bonded О atoms (1.261 Ä 1.279 Ä > 1.235 Ä 1.258 Ä). The O-C-O angles range over 122.5° 123.6°. The Na caions are octahedrally surrounded by two water О atoms and four carboxyl О atoms from three succinate anions with d(Na—O) = 2.295 A 2.541 A. The closest Na-Na distance of 3.564(2) A occurs between two crystallographically different Na caions sharing one octahedral edge. The Na ions interlink J[Cu(C4H404)4/2] chain into 2D layers parallel to (010). Of eight crystallographically different H2O molecules, four H2O molecules participate in the coordination to Na ions and the other four are located between two 2D layers. The hydrogen atoms associated with H2O molecules with d(Ο—Η) = 0.735 A -0.966 Ä form single hydrogen bonds to carboxyl or water О atoms with d(O-O) = 2.764 A 3.451 A and « ( O H O ) = 144.6°-179.2°. NoCu-Cu interaction occurs as in Cu(C4H404) · 2H2O [1]. Table 1. Data collection and handling. Crystal: blue, thin plate, size 0.01 χ 0.25 χ 0.52 mm Wavelength: Mo Ka radiation (0.71073 Ä) μ: 12.61 cm\" Diffractometer, scan mode: Bruker P4, Θ/2Θ 26max: 55° N(hkl)measured, N(hkl)unique: 5114, 3792 Criterion for /0bs, N(hkl)gl: /obs > 2 a ( W , 2846 N(param) refmed: 247 Programs: SHELXS-97 [2], SHELXL-97 [3] Correspondence author (e-mail: zhengcm@nbu.edu.cn) 166 Disodium disuccinatocuperate octahydrate Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site χ у ζ Ciso H(2A) 4e 0.3153 0.5693 0.1743 0.045(4) H(2B) 4e 0.1579 0.608 0.1111 0.045(4) H(3A) 4e 0.4018 0.571 0.0121 0.045(4) H(3B) 4e 0.5535 0.6116 0.0762 0.045(4) H(6A) 4e 0.0068 0.9271 0.2148 0.045(4) H(6B) 4e -0.1422 0.8858 0.1504 0.045(4) H(7A) 4e 0.2541 0.8913 0.1158 0.045(4) H(7B) 4e 0.0957 0.9296 0.0528 0.045(4) H(9A) 4e -0.1715 0.9607 0.4799 0.116(7) H(9B) 4e -0.2498 0.9366 0.4002 0.116(7) H(10A) 4e -0.097 0.8212 0.6937 0.116(7) H(10B) 4e -0.2879 0.8164 0.6649 0.116(7) Table 2. Continued. Atom Site X У ζ Uiso H(11A) 4e 0.509 0.8184 0.0408 0.116(7) H(11B) 4e 0.6934 0.8149 0.0605 0.116(7) H(12A) 4e 0.5777 0.9588 0.2393 0.116(7) H(12B) 4e 0.439 0.9585 0.2956 0.116(7) H(13A) 4e -0.1307 0.9746 0.679 0.116(7) H(13B) 4e -0.174 0.9748 0.5883 0.116(7) H(14A) 4e -0.1294 0.5646 0.3453 0.116(7) H(14B) 4e -0.0527 0.592 0.2603 0.116(7) H(15A) 4e 0.2017 0.5154 0.377 0.116(7) H(15B) 4e 0.33 0.4832 0.4178 0.116(7) H(16A) 4e 0.3459 0.3966 0.5219 0.116(7) H(16B) 4e 0.2729 0.4341 0.5919 0.116(7) Table 3. Atomic coordinates and displacement parameters (in Ä). Atom Site X У ζ U π f / 2 2 U33 t / 1 2 U13 С/23 Cu 4e 0.20759(6) 0.74346(2) 0.36437(3) 0.0313(4) 0.0414(3) 0.0283(2) -0.0003(2) 0.0015(2) 0.0001(2) Na(l) 4e -0.1342(2) 0.81358(7) 0.4723(1) 0.037(1) 0.0530(9) 0.0397(7) 0.0008(6) 0.0035(6) 0.0021(6) Na(2) 4e 0.5454(2) 0.81465(8) 0.2549(1) 0.039(1) 0.0563(9) 0.0395(7) -0.0032(7) 0.0036(6) -0.0002(6) 0(1) 4e 0.1706(4) 0.6755(1) 0.2643(2) 0.034(2) 0.047(1) 0.034(1) -0.003(1) 0.009(1) -0.005(1) 0(2) 4e 0.4644(4) 0.6980(1) 0.2171(2) 0.035(2) 0.056(2) 0.061(2) -0.000(1) 0.009(1) -0.018(1) 0(3) 4e 0.2164(4) 0.6880(1) -0.0331(2) 0.035(2) 0.049(1) 0.037(1) 0.004(1) 0.002(1) 0.005(1) 0(4) 4e 0.5248(4) 0.6911(1) -0.0657(2) 0.029(2) 0.055(2) 0.036(1) -0.002(1) 0.006(1) 0.005(1) 0(5) 4e 0.1960(4) 0.8101(1) 0.2597(2) 0.032(2) 0.047(1) 0.037(1) 0.000(1) 0.002(1) 0.006(1) 0(6) 4e -0.1121(4) 0.8082(1) 0.2937(2) 0.029(2) 0.055(2) 0.039(1) -0.004(1) 0.008(1) 0.004(1) 0(7) 4e 0.2454(4) 0.8228(1) -0.0345(2) 0.037(2) 0.052(1) 0.035(1) -0.002(1) 0.006(1) -0.007(1) 0(8) 4e -0.0524(4) 0.8024(1) 0.0070(2) 0.038(2) 0.056(2) 0.065(2) -0.002(1) 0.004(1) -0.019(1) C(l) 4e 0.3142(6) 0.6656(2) 0.2102(3) 0.041(3) 0.038(2) 0.033(2) -0.002(2) -0.003(2) 0.003(1) C(2) 4e 0.2909(6) 0.6091(2) 0.1373(2) 0.053(3) 0.035(2) 0.031(2) -0.001(2) 0.003(2) 0.000(1) C(3) 4e 0.4204(6) 0.6107(2) 0.0501(3) 0.039(2) 0.041(2) 0.037(2) -0.003(2) 0.003(2) 0.001(1) C(4) 4e 0.3870(5) 0.6675(2) -0.0203(2) 0.029(2) 0.040(2) 0.029(1) 0.005(1) 0.002(1) -0.003(1) C(5) 4e 0.0240(6) 0.8312(2) 0.2478(2) 0.033(2) 0.042(2) 0.030(2) 0.003(2) 0.001(1) -0.008(1) C(6) 4e -0.0095(6) 0.8873(2) 0.1769(3) 0.045(2) 0.039(2) 0.035(2) 0.003(2) -0.001(2) -0.003(1) C(7) 4e 0.1212(6) 0.8898(2) 0.0895(3) 0.050(3) 0.037(2) 0.034(2) -0.002(2) 0.001(2) 0.001(1) C(8) 4e 0.0993(6) 0.8335(2) 0.0166(2) 0.040(3) 0.042(2) 0.030(2) 0.001(2) -0.004(2) 0.003(1) 0(9) 4e -0.1492(5) 0.9335(2) 0.4435(2) 0.058(2) 0.057(2) 0.052(2) -0.000(2) 0.002(1) -0.005(1) 0(10) 4e -0.1763(5) 0.8222(2) 0.6410(2) 0.042(2) 0.103(3) 0.045(2) 0.004(2) 0.001(1) 0.015(2) 0(11) 4e 0.5859(4) 0.8252(2) 0.0825(2) 0.040(2) 0.074(2) 0.048(2) -0.000(1) -0.002(1) -0.010(1) 0(12) 4e 0.5361(5) 0.9353(2) 0.2902(2) 0.055(2) 0.057(2) 0.062(2) 0.003(2) 0.002(2) 0.005(1) 0(13) 4e -0.1842(5) 1.0007(2) 0.6351(2) 0.063(2) 0.057(2) 0.056(2) -0.003(2) 0.002(2) -0.004(1) 0(14) 4e -0.0317(5) 0.5624(2) 0.3157(3) 0.074(3) 0.057(2) 0.068(2) -0.008(2) 0.016(2) 0.003(2) 0(15) 4e 0.3325(6) 0.5094(2) 0.3735(3) 0.065(2) 0.077(2) 0.063(2) -0.011(2) 0.007(2) -0.005(2) 0(16) 4e 0.3323(6) 0.4330(2) 0.5480(3) 0.079(3) 0.072(2) 0.076(2) -0.010(2) 0.009(2) -0.016(2) Acknowledgments. The project was sponsered by the Scientific Research Foundation for the returned Overseas Chinese Scholars, State Educational Ministry and the Bruker P4 diffractometer was purchased by the generous support of Ningbo Scientific-Technical Commision and Ningbo Eucational Committee. References 1. O'Connor, В. H.; Maslen, Ε. N.: The crystal structure of Cu(II) succinate dihydrate. Acta Crystallogr. 20 (1966) 824-835. 2. Sheldrick, G. M.: Phase Annealing in SHELX-90: Direct Methods for Larger Structures. Acta Crystallogr. A46 (1990) 467-473. 3. Sheldrick, G. M.: SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany 1997.

Journal ArticleDOI
TL;DR: The trilithium citrate tetrahydrate (TLCT) as mentioned in this paper is a monoclinic tetrahedrally coordinated tetramer with an average Li-Ο bond distance of about 2.165 Ä.
Abstract: C6H13L13011, monoclinic, /12/al (No. 15), a = 18.177(4) Ä, b = 12.304(2) Ä, c = 20.595(4) Ä, β = 90.31(3)°, V= 4606.0 Ä, Ζ = 16, pm = 1 -627 g • cm\", R&(F) = 0.031, wR^F) = 0.085, Γ =293 Κ. Source of material Large single crystals were obtained from aqueous solutions of the title compound by controlled evaporation at about 315 K. Discussion The crystal structure of trilithium citrate tetrahydrate, TLCT, is built up from lithium cations, citric anions and water molecules which are linked by ionic interactions and strong hydrogen bonds. Except of Li7, which is surrounded by 6 oxygen atoms forming a distorted LiOö octahedron with an average Li—Ο bond distance of about 2.165 Ä, the independent lithium cations are tetrahedrally coordinated by oxygen atoms at distances between 1.859 A and 2.057 Ä. The anions and the hydrate molecules are arranged in layers parallel (100) whereas the cations are more homogenously distributed. All hydrogen atoms of the water molecules participate on a threedimensional network of strong hydrogen bonds characterized by 0---0 distances of about 2.85 A and O-H O angles of 165°. The Η atoms of the hydroxyl groups of the anions are involved in intramolecular hydrogen bonds. The weak anisotropy of the longitudinal elastic stiffness of TLCT [ 1 ] corresponds to the lack of a direction of predominant bond chains. The lattice parameters of TLCT, the morphology of the crystals and the anisotropy of thermal expansion and elastic properties possess a distinct pseudo-orthorhombic character. A closer inspection of the monoclinic structure reveals that, for instance, the non-equivalent citric anions are approximately related by c and b glide planes parallel to (100) and (001), respectively. In accordance with the pseudosymmetry the average intensity of (0kl)/(hk0) reflections with l/k odd is more than 10/20 times smaller compared to the average intensity of those with l/k even. If one takes further into account the lamellar twinning observed by Haussühl and Wang [ 1 ], a phase transition of type 121 a <-» lcab close to room temperature appears very likely. However, the thermal expansion of TLCT, which was studied with the aid of an optical Fizeau interferometer, and the twinning pattern observed under the polarizing microscope did not show significant anomalies between 260K and the decomposition temperature of about 380 K. Table 1. Data collection and handling. colorless prism, size 1.5 χ 2.5 χ 2.5 mm Mo K a radiation (0.71073 Ä) 1.53 cm\" Nonius CAD4, ω/2θ 55.94° 11077, 5543 /obs > 2 af/obs), 4558 467 SHELXS-97 [2], SHELXL-97 [3], ATOMS [4] Crystal: Wavelength: μ: Diffractometer, scan mode:

Journal ArticleDOI
TL;DR: Mizuj et al. as mentioned in this paper used a two-zone furnace to extract a red platelet from Ciba Specialty Chemicals at about 600 K. After 44 h of vapor growth, a number of reddish-orange platelets were obtained.
Abstract: C20H10N4O2, triclinic, PI (No. 2), a = 6.835(1) A, b = 14.800(3) A, с = 3.7334(3) A, α = 97.16( 1)°, β = 97.803(9)°, γ = 91,53( 1)°, V = 370.9 A, Ζ = 1, R&(F) =0.061, wR(F) = 0.077, T= 296 K. Source of material The title compound (m-CN DPP) was obtained from Ciba Specialty Chemicals. The sample was purified two times by sublimation using a two-zone furnace [1]. The single crystals were then grown from the vapor phase using the same sublimation equipment at about 600 K. After 44 h of vapor growth, a number of reddish-orange platelets were obtained. The non-hydrogen atoms were refined anisotropically. All Η-atoms were localized by calculation and not refined. Discussion Diketopyrrolopyrroles are industrially important red pigments based on the 3,6-diphenyl-pyrrolo[3,4-c]pyrrole-l,4-dione chromophore (DPP) [2]. The title compound (m-CN DPP) is a m-cyanated derivative of DPP which has newly appeared on the * Correspondence author (e-mail: mizuj@ed.ynu.ac.jp) market. DPP derivatives exhibit a variety of shades in the solid state, although no significant difference is recognized in solution spectra [2, 3]. A series of investigations have been therefore carried out on DPP, p-CI DPP and m-Cl DPP in order to elucidate the correlation between crystal and electronic structures [3-7]. The present structure analysis aims at extending our structural investigation on DPP pigments. The structure of ш-CN DPP is found to be isomorphous with that of ra-Cl DPP [6]. The figure shows the conformation of m-CN DPP as well as the projection of the crystal structure onto the (a, b) plane. The molecule belongs to the point group of C\. The molecule is not entirely planar because the phenyl rings are twisted out of the heterocyclic ring system by about 10.1(3)°. The torsion angle for m-Cl DPP is 10.3(3)° [6]. The molecules are aligned on the same plane and are parallel to each other whose interplanar distance amounts to about 3.32 A. In the [101] direction, there are chains of intermolecular hydrogen bonds between the NH group of one molecule and the О atom of the neighboring molecule, forming a two-dimensional H-bond network. There are also van der Waals contacts along the fe-axis. On the other hand, the molecules are stacked with a large molecular π-π overlap along the c-axis in a fashion "quasi bricks in a brick wall" structure. The extent of the molecular overlap is slightly larger than that of m-Cl DPP [6]. The angle N-H-O is 168.2° and the distance between Ν—Η, Ν—О and Η—О are 0.95 A, 2.88 A and 1.94 A, respectively, indicating the formation of a strong hydrogen bond. Table 1. Data collection and handling. Crystal: reddish-orange platelet, size 0.03 χ 0 .10x0 .20 mm Wavelength: Cu Ka radiation (1.5418 A) μ: 8.38 cm" 1 Diffractometer, scan mode: Rigaku AFC7R, ω/2θ 20max 136.1° N(/iW)mcasured, N(hkl)umque: 1458, 1338 Criterion for I0bs, N(hkl)tt· /0bs> 1 a(Iobs). 1003 N(param) refined: 119 Programs: SHELXS86 [8], teXsan [9], ORTEPII [10] Table 2. Atomic coordinates and displacement parameters (in A). Atom Site χ у ζ C/iso H(1N) 2 i -0.4228 -0.0695 -0.3088 0.0343 H(5) 2 i 0.0898 -0.2199 0.2009 0.0395 H(7) 2i -0.3052 -0.4324 0.1674 0.0480 H(8) 2 i -0.5590 -0.3434 -0.0403 0.0506 H(9) 2 i -0.4933 -0.1958 -0.1531 0.0410 10.1515/ncrs-2000-0196 Downloaded from PubFactory at 08/09/2016 06:18:46AM via free access 196 3,6-Bis(3-cyanophenyl)pyrrolo[3,4-c]pyrrole-1,4-dione Table 3. Atomic coordinates and displacement parameters (in A). Atom Site X У г U и t/22 U33 U12 U π t /23 O(l) 2 i -0.3187(3) 0.0963(1) -0.3953(6) 0.0260(9) 0.028(1) 0.051(1) -0.0028(7) -0.0086(8) 0.0139(8) N(l) 2 i -0.2914(3) -0.0474(1) -0.2166(6) 0.020(1) 0.026(1) 0.037(1) -0.0063(8) -0.0061(8) 0.0079(9) N(2) 2 i 0.2018(5) -0.4329(2) 0.4272(9) 0.050(2) 0.041(2) 0.076(2) 0.000(1) -0.009(1) 0.022(1) C(l) 2 i -0.2200(4) 0.0397(2) -0.2431(7) 0.025(1) 0.025(1) 0.033(1) -0.0031(9) -0.001(1) 0.008(1) C(2) 2 i -0.1514(4) -0.0988(2) -0.0409(7) 0.024(1) 0.024(1) 0.032(1) -0.0036(9) 0.001(1) 0.006(1) C(3) 2 i -0.0180(4) 0.0431(2) -0.0595(7) 0.025(1) 0.021(1) 0.033(1) -0.0050(9) -0.003(1) 0.007(1) C(4) 2i -0.1945(4) -0.1920(2) 0.0175(7) 0.026(1) 0.024(1) 0.031(1) -0.0077(9) -0.002(1) 0.0049(9) C(5) 2i -0.0421(4) -0.2448(2) 0.1488(8) 0.032(1) 0.025(1) 0.040(1) -0.006(1) -0.001(1) 0.009(1) C(6) 2 i -0.0833(4) -0.3342(2) 0.2034(8) 0.036(1) 0.026(1) 0.040(1) -0.005(1) -0.004(1) 0.009(1) C(7) 2i -0.2773(5) -0.3712(2) 0.1302(9) 0.042(2) 0.027(1) 0.050(2) -0.013(1) 0.000(1) 0.011(1) C ( 8 ) 2 i -0.4267(4) -0.3188(2) 0.0042(9) 0.035(1) 0.035(1) 0.055(2) -0.016(1) -0.001(1) 0.010(1) C(9) 2 i -0.3884(4) -0.2306(2) -0.0583(8) 0.029(1) 0.031(1) 0.042(2) -0.006(1) -0.001(1) 0.009(1) C(10) 2i 0.0749(5) -0.3893(2) 0.3282(9) 0.046(2) 0.027(1) 0.052(2) -0.007(1) -0.001(1) 0.012(1)

Journal ArticleDOI
TL;DR: The ternary system K20-Nb205-B203 as discussed by the authors is a tetragonal tungsten bronze structure, which consists of close-packed layers of oxygen atoms with five different possible sites for accommodation of metal cations.
Abstract: K6Nbi0.80O30, te t ragonal , P4/mbm (No . 127), a = 12 .537(2) Ä, c = 3.9730(1) Ä, V= 624.5 Ä, Z = 1, Rst(F) = 0.037, wRrerfF) = 0.119, Τ =293 Κ. Source of material The title compound was prepared in the course of a systematic investigation of the ternary system K20-Nb205-B203. It crystallizes within a wide range of ternary composition: 20 mol% < x(K 2 0) < 35 mol%, 8 mol% < x(B2C>3) < 50 mol%, 22 mol% < x(Nb20s) < 55 mol%, but does not occur in the binary system K20-Nb 205. K6Nbio.803o was grown from a melt with molar composition of Nb20s: K2CO3: B 2 0 3 of 1 : 0 . 8 5 7 : 1 to colorless, long-prismatic crystals which were separated from the flux using hot diluted hydrochloric acid. Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site Occ. χ y ζ Discussion The stucture of KeNbio.sCbo belongs basically to the tetragonal tungsten bronze structure type, which consists of close-packed layers of oxygen atoms with five different possible sites for accommodation of metal cations. Using the nomenclature of Jamieson et al. [1], the complete unit cell of a tetragonal tungsten bronze is (Al)2(A2)4C4(Bl)2(B2)8O30. In KeNbio.sCbo, Nb atoms occupy both of the slightly distorted octahedral sites B1 (Nbl) and B2 (Nb2) fully. The Al site with a cube-octahedral 12-fold coordination as well as the A2 site with 9-fold distorted tricapped trigonal prismatic coordination are fully occupied by Κ atoms. To achieve electrostatic neutrality the tricapped trigonal prismatically coordinated C site is partly by 1/5 occupied by additional niobium Nb3 atoms. The structure is isotypic with K6Taio.803o [2]. Due to the frequent occurrence of ferroic phase transitions in tetragonal tungsten bronze-type structures, thermal analysis investigations (DSC) were performed within the temperature range from 150 Κ to 870 K. No thermal effect was detected. Table 1. Data collection and handling. Crystal: colourless prism, size 0.20 χ 0.22 χ 0.24 mm Wavelength: Mo K a radiation (0.71073 Ä) μ: 58.87 cm\"' Diffractometer, scan mode: Enraf-Nonius CAD-4, ω/2θ 2Gmax: 70.14° Wlfc/Jmeasured, WlWjunique: 7310,818 Criterion for I0bs, N(hkl)gt: /obs > 2 CT(/obs), 684 N(param)K fined·' 47 Programs: MolEN [3], SHELXL-97 [4], ATOMS [5] U11 U22 U33 Ui 2 Ui 3 U23 Nb(l) 2c 0 Nb(2) 8i 0.07572(5) Nb(3) 4g 0.203(5) 0.1203(2) K(l) 2a 0 K(2) Ag 0.3272(1) 1/2 1/2 0.0211(4) Uu 0.0227(5) -0.0109(4) 0 0.20747(4) 1/2 0.0155(3) 0.0134(3) 0.0317(4) 0.0022(2) 0 1/2-* 0 0.016(1) Uu 0.010(2) -0.002(1) 0 0 0 0.0294(9) U\\\\ 0.026(1) 0 0 m-x 0 0.0311(7) t /u 0.0184(8) 0.0153(8) 0 * Correspondence author (e-mail: p.held@kri.uni-koeln.de) 320 Potassium niobate

Journal ArticleDOI
TL;DR: In this paper, a hexagonal closest packing of the CI atoms was found for the monoclinic structure of TaCb2 and the average bond lengths were shown to be at most 2.5 K/min up to 475 К.
Abstract: ClioTa2 , monoclinic, C12/ml (N0. 12), a = 18.278(3) Ä, b = 17.766(5) Ä, с = 5.850(1) Ä, β = 90.62(2)°, V= 1899.5 Ä, Z = 6, Rst(F) = 0 . 0 6 1 , wR(F) = 0 . 1 7 0 , T= 193 K . Source of material 0.11 g of Та powder and 1 ml of S2CI2 were frozen at 77 К in a glass ampoule which then was evacuated and sealed. The ampoule was heated at a rate of 0.5 K/min up to 475 К and left at that temperature for 14 days. Upon cooling at 0.1 K/min (TaCb)2 and sulfur crystallized. Discussion As stated by Zalkin and Sands [1], (TaCbh is isotypic with the modification they found for ( N b C b b and which was later refined [2]. The structure contains two crystallographically independent dimeric molecules. The CI atoms form a hexagonal closest packing. This also applies to the structure of (Tab)2, but it exhibits stacking disorder [3]. For (NbCb)2 another modification with cubic closest packing of the CI atoms is known [4]. For a general review of crystal structures of (MXs)2 molecules, including yet unkown (hypothetical) structures, see [5]. Recently, several packing varieties were found for (MoCl5)2 [6]. The average bond lengths are: Та—Cl(bridge) 2.547(3) А, Та—Cl(eq) 2.225(4) Ä, Та—Cl(ax) 2.307(4) A. Table 1. Data collection and handling. Crystal: yellow column, size 0.20 χ 0.43 χ 1.25 mm Wavelength: Mo Ka radiation (0.71070 Ä) μ : 193.25 cm\" 1 Diffractometer, scan mode: Enraf-Nonius CAD4, ω 2 0 m a x : 49.96° Nf/lWJmeasured, N(hkl)miqiK\\ 2600, 1721 Criterion for Z0bs, N(hkl)$: W > 2 c(/o b s) , 1485 N(param)reflned· 89 Programs: HABITUS [7], SHELXL-97 [8], ZORTEP [9] Tab le 2. Atomic coordinates and displacement parameters (in Ä). Atom Site χ у ζ U\\\\ U22 t/33 U12 U13 (/23 Ta( l ) 4« 0 0.11061(5) 0 0.0112(6) 0.0047(6) 0.0173(6) 0 0.0016(3) 0 Ta(2) 8/ 0.33335(3) 0.11067(3) 0.5228(1) 0.0109(5) 0.0058(5) 0.0166(5) 0.0000(2) 0.0004(3) -0.0004(2) C l ( l ) 4 i 0.0520(3) 0 0.2250(8) 0.015(2) 0.004(2) 0.018(2) 0 -0.000(2) 0 Cl(2) 87 0.0560(2) 0.1915(2) 0.2408(7) 0.023(2) 0.016(2) 0.029(2) -0.004(2) -0.003(2) -0.004(2) ci(3) 8/ 0.1021(2) 0.0974(2) -0.2265(7) 0.023(2) 0.014(2) 0.030(2) 0.002(2) 0.009(2) 0.001(2) Cl(4) 4 i 0.2806(3) 0 0.7446(8) 0.016(2) 0.005(2) 0.018(2) 0 0.006(2) 0 Cl(5) 8i 0.2774(2) 0.1913(2) 0.7611(7) 0.021(2) 0.015(2) 0.029(2) 0.002(2) 0.004(2) -0.004(2) Cl(6) 8 j 0.2316(2) 0.0976(2) 0.2893(7) 0.016(2) 0.016(2) 0.026(2) -0.001(2) -0.003(2) 0.005(2) Cl(7) 4 i 0.3858(3) 0 0.3014(8) 0.019(3) 0.002(2) 0.020(2) 0 0.006(2) 0 Cl(8) 8 j 0.3891(2) 0.1911(2) 0.2845(7) 0.023(2) 0.015(2) 0.027(2) -0.004(2) 0.004(2) 0.002(2) Cl(9) 8i 0.4349(2) 0.0981(2) 0.7560(7) 0.018(2) 0.018(2) 0.023(2) -0.002(2) -0.003(1) -0.002(1) Correspondence author (e-mail: mueller@chemie.uni-marburg.de) Unauthenticated Download Date | 6/26/19 11:15 AM 2 Tantalum pentachloride

Journal ArticleDOI
TL;DR: In this paper, the authors used PLATON/SQUEEZE to the diffraction data to account for one severely disordered molecule of THF and obtained a red material (0.22 g, 75%), which is well soluble in hexanes, in aromatic solvents and in tetrahydrofuran.
Abstract: C36Hi08N6O3Si12Yb3, monoclinic, P\\2xlc\\ (No. 14), a = 11.421(2) A, b = 28.422(5) A, c = 21.796(4) A, P = 96.600(4)°, V = 7028.0 A, Z = 4, Rgt(F) = 0.039, wRref{F) = 0.108, 7*= 173 K. Source of material In the glovebox, addition of a solution of potassiumbis(dimethylsilyl)amide (0.21 g, 1.2 mmol) in 20 mL toluene to a pale yellow solution of YbI2(THF)2 (0.34 g, 0.6 mmol) in 20 mL tetrahydrofuran resulted in formation of a red suspension. The reaction mixture was stirred for 30 minutes, the volatiles were removed, and the residues were extracted with hexanes. Centrifugation followed by cooling of the obtained red solution to 243 K resulted in almost complete crystallization of the complex with THF. Removal of the mother liquor followed by drying under vacuum gave the title compound as a red material (0.22 g, 75%). Analytically pure complex is well soluble in hexanes, in aromatic solvents, and in tetrahydrofuran. Discussion Unresolvable positional disorder exists in two of the dimethyl silyl groups which gives rises to high thermal parameters among these atoms. PLATON/SQUEEZE was applied to the diffraction data to account for one severely disordered molecule of THF. Corresponding atomic coordinates and displacement parameters are not included in table 2 and 3. Crystal: orange block, size 0.20 x 0.40 x 0.40 mm Wavelength: Mo Ka radiation (0.71073 Â) 41 .96 cm\" Diffractometer, scan mode: CCD area detector, 2 c(/obs), 8785 N(param)^TmcA478 Programs: SHELXTL [1], P L A T O N [2] Table 2. Atomic coordinates and displacement parameters (in Â). Atom Site X y z f/iso H(1A) 4e 0.8236 -0.1081 0.3484 0.093 H(1B) 4e 0.7698 -0.1200 0.2785 0.093 H(2A) 4e 0.6437 -0.1692 0.3094 0.250 H(2B) 4e 0.7172 -0.1660 0.3764 0.250 H(3A) 4e 0.5018 -0.0718 0.3158 0.058 H(3B) 4e 0.5672 -0.0563 0.3820 0.058 H(4A) 4e 0.5848 -0.1290 0.4119 0.112 H(4B) 4e 0.5025 -0.1435 0.3500 0.112 H(5A) 4e 0.8875 0.0425 0.5339 0.069 H(5B) 4e 0.8546 0.0850 0.4870 0.069 H(5C) 4e 0.9702 0.0542 0.4814 0.069 H(6A) 4e 0.7881 -0.0319 0.5297 0.074 H(6B) 4e 0.8049 -0.0670 0.4740 0.074 H(6C) 4e 0.6783 -0.0445 0.4800 0.074 H(7A) 4e 0.6451 0.0856 0.5156 0.086 H(7B) 4e 0.5531 0.0429 0.5126 0.086 H(7C) 4e 0.5066 0.0958 0.5029 0.086 H(8A) 4e 0.4278 0.0425 0.3320 0.078 H(8B) 4e 0.3672 0.0683 0.3855 0.078 H(8C) 4e 0.4133 0.0154 0.3950 0.078 H(9A) 4e 0.3699 0.0086 0.1112 0.093 H(9B) 4e 0.4623 0.0511 0.1130 0.093 H(9C) 4e 0.3729 0.0477 0.1643 0.093 H(10A) 4e 0.4136 -0.0710 0.1473 0.102 H(10B) 4e 0.4517 -0.0789 0.2195 0.102 H(10C) 4e 0.5438 -0.0888 0.1710 0.102 H(11A) 4e 0.6425 -0.0704 0.0385 0.087 H(11B) 4e 0.6895 -0.0217 0.0139 0.087 H(11C) 4e 0.5718 -0.0227 0.0472 0.087 H(12A) 4e 0.7648 -0.1099 0.1215 0.081 H(12B) 4e 0.7971 -0.0908 0.1905 0.081 H(12C) 4e 0.8894 -0.0852 0.1410 0.081 H(13A) 4e 1.1658 -0.0181 0.2106 0.072 H(13B) 4e 1.0547 -0.0040 0.1626 0.072 H(13C) 4e 1.0617 -0.0552 0.1934 0.072 H(14A) 4e 1.1921 -0.001 0.3242 0.068 * Correspondence author (e-mail: g.rabe@lrz.tu-muenchen.de) C32HiooN602Sii2Yb3 • C4H8O 561 Table 2. Continued. Table 2. Continued. Atom Site x y z C/iso Atom Site H(14B) 4e 1.0964 -0.0239 0.3634 0.068 H(23C) 4e 1.1796 0.0964 0.1390 0.101 H(14C) 4e 1.1057 0.0321 0.3578 0.068 H(24A) 4e 1.1219 0.1409 -0.0093 0.094 H(15A) 4e 1.1714 0.1236 0.3096 0.076 H(24B) 4e 1.0953 0.19300 0.0134 0.094 H(15B) 4e 1.1397 0.1428 0.2407 0.076 H(24C) 4e 0.9928 0.1629 -0.0245 0.094 H(15C) 4e 1.1675 0.0882 0.2524 0.076 C(25) 4e 0.841(1) 0.3600(4) 0.1691(7) 0.101(4) H(16A) 4e 1.0129 0.1292 0.3775 0.063 H(25A) 4e 0.8138 0.3853 0.1946 0.152 H(16B) 4e 0.8957 0.0978 0.3697 0.063 H(25B) 4e 0.8122 0.3658 0.1257 0.152 H(16C) 4e 0.8908 0.1516 0.3479 0.063 H(25C) 4e 0.9274 0.3592 0.1742 0.152 H(17A) 4e 0.4332 0.1587 0.2748 0.086 C(26) 4e 0.698(1) 0.3213(5) 0.2562(8) 0.123(5) H(17B) 4e 0.4492 0.1031 0.2674 0.086 H(26A) 4e 0.7031 0.3555 0.2614 0.185 H(17C) 4e 0.4136 0.1351 0.2077 0.086 H(26B) 4e 0.7307 0.3060 0.2948 0.185 H(18A) 4e 0.6155 0.2027 0.3136 0.074 H(26C) 4e 0.6159 0.3120 0.2460 0.185 H(18B) 4e 0.7237 0.2108 0.2743 0.074 C(27) 4e 1.139(2) 0.2756(8) 0.231(1) 0.20(1) H(18C) 4e 0.7331 0.1722 0.3280 0.074 H(27A) 4e 1.1900 0.2922 0.2635 0.295 H(19A) 4e 0.3787 0.2167 0.1294 0.092 H(27B) 4e 1.1217 0.2961 0.1953 0.295 H(19B) 4e 0.4759 0.2557 0.1195 0.092 H(27C) 4e 1.1782 0.2470 0.2194 0.295 H(19C) 4e 0.4793 0.2291 0.1844 0.092 C(28) 4e 0.977(2) 0.2918(7) 0.333(1) 0.21(1) H(20A) 4e 0.3815 0.1457 0.0639 0.078 H(28A) 4e 1.0538 0.3023 0.3525 0.312 H(20B) 4e 0.4869 0.1087 0.0629 0.078 H(28B) 4e 0.9397 0.2713 0.3608 0.312 H(20C) 4e 0.4735 0.1512 0.0143 0.078 H(28C) 4e 0.9266 0.3192 0.3222 0.312 H(21A) 4e 0.8642 0.0592 -0.0650 0.096 H(29A) 4e 0.7865 0.2465 -0.0357 0.097 H(21B) 4e 0.8202 0.0207 -0.0192 0.096 H(29B) 4e 0.7074 0.2687 0.0136 0.097 H(21C) 4e 0.9459 0.0453 -0.0030 0.096 H(30A) 4e 0.8137 0.3202 -0.0562 0.141 H(22A) 4e 0.7525 0.1334 -0.0774 0.089 H(30B) 4e 0.7910 0.3371 0.0118 0.141 H(22B) 4e 0.7409 0.1716 -0.0246 0.089 H(31A) 4e 0.9814 0.3448 0.0232 0.128 H(22C) 4e 0.6371 0.1345 -0.0422 0.089 H(31B) 4e 0.9993 0.3058 -0.0285 0.128 H(23A) 4e 1.1675 0.0788 0.0688 0.101 H(32A) 4e 1.0435 0.2564 0.0509 0.085 H(23B) 4e 1.0791 0.0594 0.1148 0.101 H(32B) 4e 0.9874 0.2909 0.0982 0.085 Table 3. Atomic coordinates and displacement parameters (in À). Atom Site X y z Un C/22 C/33 t/|2 C,3 U23 Yb(l) 4e 0.74226(2) 0.01072(1) 0.29315(2) 0.0241(2) 0.0268(2) 0.0241(2) -0.0021(1) 0.0020(1) 0.0008(1) Yb(2) 4e 0.77947(2) 0.078585(9) 0.16216(2) 0.0246(1) 0.0204(2) 0.0221(2) 0.0005(1) 0.0011(1) 0.0005(1) Yb(3) 4e 0.82618(3) 0.19897(1) 0.13759(2) 0.0382(2) 0.0219(2) 0.0328(2) -0.0016(1) 0.0049(2) 0.0013(1) Si(l) 4e 0.8005(2) 0.01234(7) 0.4374(1) 0.030(1) 0.042(1) 0.029(1) -0.0022(9) 0.004(1) 0.002(1) Si(2) 4e 0.5767(2) 0.06839(7) 0.4110(1) 0.032(1) 0.041(1) 0.032(2) 0.0025(9) 0.008(1) 0.002(1) Si(3) 4e 0.5305(2) -0.00620(8) 0.1880(1) 0.032(1) 0.040(1) 0.034(2) -0.0112(9) -0.005(1) 0.004(1) Si(4) 4e 0.7400(2) -0.02671(7) 0.1231(1) 0.046(1) 0.028(1) 0.031(2) -0.0017(9) 0.001(1) -0.005(1) Si(5) 4e 1.0029(2) 0.00092(7) 0.2654(1) 0.0271(9) 0.031(1) 0.032(1) 0.0055(8) 0.004(1) 0.0038(9) Si(6) 4e 0.9713(2) 0.10485(7) 0.2739(1) 0.0255(9) 0.029(1) 0.028(1) -0.0048(8) 0.0009(9) -0.0016(9) Si(7) 4e 0.6196(2) 0.14278(7) 0.2398(1) 0.0294(9) 0.032(1) 0.030(1) 0.0066(8) 0.005(1) 0.0023(9) Si(8) 4e 0.5585(2) 0.17897(7) 0.1113(1) 0.036(1) 0.034(1) 0.036(2) 0.0072(9) 0.001(1) 0.006(1) Si(9) 4e 0.7937(2) 0.09774(7) 0.0211(1) 0.054(1) 0.034(1) 0.027(2) 0.002(1) 0.006(1) -0.003(1) Si(10) 4e 1.0197(2) 0.13673(8) 0.0807(1) 0.036(1) 0.044(1) 0.040(2) 0.0045(9) 0.014(1) 0.010(1) S i ( l l ) 4e 0.7840(3) 0.30334(9) 0.1934(2) 0.111(2) 0.035(1) 0.080(3) 0.001(2) 0.005(2) -0.015(2) Si(12) 4e 0.9970(3) 0.2594(1) 0.2621(2) 0.100(2) 0.054(2) 0.061(2) -0.022(2) -0.002(2) -0.009(2) O( l ) 4e 0.6798(5) -0.0687(2) 0.3183(3) 0.058(3) 0.031(3) 0.049(4) -0.006(3) 0.012(3) 0.008(3) 0(2) 4e 0.8692(6) 0.2481(2) 0.0515(3) 0.077(4) 0.044(3) 0.049(5) -0.009(3) 0.003(4) 0.019(3) N( l ) 4e 0.6893(5) 0.0357(2) 0.3901(3) 0.035(3) 0.034(3) 0.035(4) 0.001(3) 0.002(3) 0.000(3) N(2) 4e 0.6731(5) 0.0037(2) 0.1767(3) 0.031(3) 0.021(3) 0.031(4) -0.004(2) 0.001(3) -0.001(3) N(3) 4e 0.9198(4) 0.0506(2) 0.2525(3) 0.019(2) 0.029(3) 0.026(4) -0.004(2) -0.004(3) -0.003(3) N(4) 4e 0.6529(5) 0.1518(2) 0.1665(3) 0.030(3) 0.028(3) 0.026(4) 0.003(2) 0.001(3) -0.001(3) N(5) 4e 0.8752(5) 0.1227(2) 0.0829(3) 0.031(3) 0.034(3) 0.025(4) 0.006(2) 0.004(3) 0.001(3) N(6) 4e 0.8830(7) 0.2602(2) 0.2073(4) 0.082(5) 0.029(4) 0.045(6) -0.009(3) 0.002(5) -0.013(3) C( l ) 4e 0.750(1) -0.1116(3) 0.3202(6) 0.104(8) 0.037(5) 0.10(1) 0.019(5) 0.052(8) 0.016(6) C(2) 4e 0.672(2) -0.1474(4) 0.343(1) 0.31(3) 0.040(7) 0.32(3) 0.04(1) 0.25(2) 0.06(1) C(3) 4e 0.5717(8) -0.0774(3) 0.3462(4) 0.060(5) 0.045(5) 0.042(6) -0.011(4) 0.011(5) 0.006(4) C(4) 4e 0.576(1) -0.1271(4) 0.3663(6) 0.12(1) 0.059(6) 0.11(1) -0.029(7) 0.069(9) -0.003(7) C(5) 4e 0.8886(7) 0.0534(3) 0.4913(4) 0.039(4) 0.056(5) 0.039(6) -0.007(4) -0.011(4) 0.002(4) C(6) 4e 0.7636(7) -0.0389(3) 0.4861(4) 0.049(5) 0.058(5) 0.041(6) -0.012(4) 0.000(5) 0.011(5) C(7) 4e 0.5695(8) 0.0738(4) 0.4955(4) 0.052(5) 0.081(7) 0.038(6) 0.008(5) 0.008(5) -0.020(5) C(8) 4e 0.4285(7) 0.0460(3) 0.3768(4) 0.037(4) 0.064(6) 0.058(7) -0.007(4) 0.020(5) -0.008(5) C(9) 4e 0.4209(7) 0.0295(4) 0.1382(5) 0.031(4) 0.089(7) 0.063(8) -0.002(4) -0.010(5) 0.018(6) C(10) 4e 0.4787(9) -0.0687(3) 0.1806(5) 0.071(6) 0.056(6) 0.078(9) -0.032(5) 0.013(6) -0.008(6) C ( l l ) 4e 0.6502(9) -0.0366(3) 0.0465(4) 0.080(6) 0.053(6) 0.038(7) -0.007(5) -0.004(5) -0.006(5) 562 C32H,ooN602Sil2Yb3 • C 4 H g O

Journal ArticleDOI
TL;DR: Zhao et al. as discussed by the authors synthesized the first chromium-based borophosphate by high temperature reaction (1273 K) of mixtures of Cr203 with BPO4 (molar ratio 1:3) and CrP04 · 4H20 with B PO4 ·χΗ20 (molecular ratio 2:1), respectively.
Abstract: B2Cr4024P6, trigonal, P3 (No. 143), a = 7.95419(6) Ä, c = 7.36130(1) Ä, V = 403.4 A, Z = 2, R(P) = 0.123, wR(P) = 0.115, R(I) = 0.049, Τ = 295 Κ. Source of material A considerable number of borophosphates has been characterized in the past six years [1, 2]; however no chromium based compounds have been reported so far. The title compound was synthesized by high temperature reaction (1273 K) of mixtures of Cr203 with BPO4 (molar ratio 1:3) and CrP04 · 4H20 with BPO4 ·χΗ20 (molar ratio 2:1) , respectively. The syntheses were carried out under air. The starting materials were of analytical grade. The crystal structure was solved by direct methods from X-ray powder data and refined by Rietveld methods [3-5]. The chemical composition was confirmed by ICP-AES analysis. Discussion Cr2[BP30i2] is the first Cr-based borophosphate. Its crystal structure contains two crystallographically independent oligomeric [BPaOia]^ anions (Fig., left) which are built up by a central trigonal planar BO3 group sharing common corners with three phosphate tetrahedra. This type of anion represents a so far unknown motif in borophosphate structural chemistry. Chromium(III) is octahedrally coordinated by oxygen (d(C.r—O): 188 pm 207 pm) and forms face-sharing CnOg octahedral dimers (Cr—Cr distances: 272 pm, 290 pm). The crystal structure (Fig., middle) can be described as a three-dimensional linkage of the oligomeric anions via Cr209 octahedral dimers (Fig., right). With regard to powder refinement, the distances (B—O: 128 pm 141 pm; Ρ—Ο: 149 pm 162 pm) and angles within the oligomeric units deviate marginally from the values in the anionic partial structures of related borophosphates [1]. At temperatures above 1273 Κ Cr2[BP30i2] slowly decomposes and the substitutional low-cristobalite type (Μ,Β)Ρθ4 [6] (Μ = Μη, Fe, Co, Ni, Cu) is formed. After heating to 1673 Κ, a-CrPC>4 is the residual phase [7], Table X. Data collection and handling. Powder: light-green Wavelength: Cu Ka radiation (1.54059 Ä) μ : 297.7 cm\" 1 Diffractometer: Stoe STADI MP Scan mode: ω/2θ 20max , step width: 100°, 0.01° N(points)mtas,\\iKi· 9000 N(hkl) measured: 277 N(param)refmei·· 55 Programs: EXTRA [3], SIRPOW [4], CSD [5] DIAMOND [8] * Correspondence author (e-mail: zhao@cpfs.mpg.de) 202 Dichromium monoborotriphosphate Table 2. Atomic coordinates and displacement parameters (in Ä). Atom Site X y • ζ Uiso Cr(l) ' 1 a 0 0 0.9368° 0.0114(2) Cr(2) 1 c 2/3 1/3 0.4509(9) 0.0063(2) Cr(3) 1 a 0 0 0.5677(9) 0.0147(2) Cr(4) 1 c 2/3 1/3 0.0572(7) 0.0118(2) P(l) 3d 0.9812(6) 0.3599(5) 0.756(1) 0.0074(2) P(2) 3d 0.0076(6) 0.7163(6) 0.257(1) 0.0127(2) B(l) 1 b 1/3 2/3 0.253(1) 0.0112(2) B(2) 1 b 1/3 2/3 0.784(1) 0.0152(2) Table 2. Continued.

Journal ArticleDOI
TL;DR: In this paper, the overall structure of [CuCl2(C3H4N2)4] I, previously determined by neutron diffraction, has been independently redetermined by X-ray diffraction.
Abstract: C12H16CI2C11N8, monoclinic, C12i/cl (No. 15), a = 13.645(5) Ä, b = 9.182(4)Ä,c = 14.917(5) Ä, β = 118.03(3)°, V = 1649.7 A, Ζ = 4, Rgt(F) = 0.027, wR(F) = 0.027, Τ = 293 Κ. Source of material Crystals were obtained by slow evaporation of a mixture of CuCh and pyrazole (molar ratio 1:4) in water. Discussion The crystal structure of [CuCl2(C3H4N2)4] I, previously determined by neutron diffraction [1], has been independently redetermined by X-ray diffraction. The overall structure of I is confirmed, and a good agreement is observed for most structural details. The results can be usefully compared with those found for [NiCl2(C3H4N2)4] II, whose structure was also determined by both neutron and X-ray diffraction [2]. We can observe that: (a) for both compound the X-ray bond angles generally differ by less than 1 degree from neutron angles, also when only Ν and C atoms are concerned; (b) the Cu—CI and Cu—Ν X-ray bond lengths [2.839(1) Ä and 2.024(2) Ä] are equal (within the esd's) to the neutron values [2.840(1) and 2.024(1) Ä], while the Ni—CI bonds [2.504(1) Ä] are slightly longer than the neutron bonds [2.493(1) Ä]; (c) the average of the X-ray bond lengths in the four pyrazole rings [1.35 Ä in both compounds] is by 0.01 Ä shorter than found in the neutron experiments [1.36 A in both compounds]; (d) the X-ray internal hydrogen bonded N-C1 contacts [I: N2-C1 3.204(2) Ä, N4-C1 3.131(2) Ä ; II: N(2)-C1 3.151(2) A, N4—C1 3.073(2) Ä] differ more than in the neutron studies [I: N2-C1 3.182(1) Ä, N4-C1 3.144(1) Ä; II: N(2)-C1 3.122(1) Ä, N4-C1 3.094(1) A]; (e) the C—Η and Ν—Η X-ray bond distances in I are systematically shorter than the corresponding neutron values [mean C—Η 0.88 Ä vs 1.08 Ä; mean Ν—Η 0.92 Ä vs 1.02 Ä]. The same is not verifiable in II where the X-ray Η atoms are in calculated positions. Table 1. Data collection and handling. Crystal: blue prism, size 0.1 χ 0.1 χ 0.2 mm Wavelength: Mo Ka radiation (0.71073 Ä) μ: 16.56 cm\"' Diffractometer, scan mode: Philips PW 1100, Θ/2Θ 20max: 50° N(hkl)measured, N(hkl)unique: 1601, 1445 Criterion for Fobs, N(hkl)gt: Fobs > 6 o(Fobs), 1259 N(param) refined: 138 Program: SHELX-76 [3] Table 2. Atomic coordinates and displacement parameters (in Ä ). Atom Site X > 2 ί/iso H(l ) 8 / 0.384(4) -0.125(5) 0.260(3) 0.06(1) H(2) 8 / 0.317(4) 0.039(5) 0.361(3) 0.08(1) H(3) 8 / 0.124(3) 0.099(4) 0.234(3) 0.04(1) H(4) 8 / 0.158(4) 0.290(5) -0.170(4) 0.08(1) H(5) 8 / 0.978(3) 0.484(5) -0.096(3) 0.06(1) H(6) 8 / 0.028(4) 0.333(5) -0.001(4) 0.07(2) H(7) 8 / 0.232(4) -0.142(5) 0.093(4) 0.07(1) H(8) 8 / 0.118(3) 0.056(5) -0.121(3) 0.06(1) * Correspondence author (e-mail: graziani@chim02.chin.unipd.it) 288 Dichlorotetrakis(pyrazoleiV2)copper(II) Table 3. Atomic coordinates and displacement parameters (in Ä). Atom Site X y ζ Un 1/22 t/33 U12 U13 Ü23 Cu 4 a 0 0 0 0.0325(3) 0.0333(3) 0.0281(3) -0.0095(3) 0.0095(2) 0.0076(3) Cl( l ) 8/ 0.09644(7) -0.18562(9) -0.08931(7) 0.0437(5) 0.0338(4) 0.0397(5) 0.0041(4) 0.0248(4) -0.0005(4) N( l ) 8if 0.1425(2) -0.0191(3) 0.1322(2) 0.032(1) 0.029(2) 0.030(1) 0.000(1) 0.015(1) 0.002(1) N(2) 8/ 0.2322(2) -0.0959(3) 0.1453(2) 0.038(2) 0.031(2) 0.043(2) 0.002(1) 0.023(1) 0.000(1) N(3) 8/ 0.0597(2) 0.1708(3) -0.0425(2) 0.032(1) 0.029(2) 0.033(1) -0.004(1) 0.017(1) 0.003(1) N(4) 8/ 0.1110(3) 0.1537(3) -0.1004(2) 0.051(2) 0.033(2) 0.050(2) 0.000(1) 0.035(2) 0.003(1) C( l ) 8/ 0.3135(3) -0.0861(4) 0.2417(3) 0.033(2) 0.041(2) 0.048(2) 0.004(2) 0.013(2) 0.010(2) C(2) 8/ 0.2754(3) 0.0004(5) 0.2922(3) 0.046(2) 0.051(2) 0.030(2) -0.005(2) 0.010(2) 0.003(2) C(3) 8/ 0.1687(3) 0.0406(4) 0.2220(2) 0.041(2) 0.033(2) 0.030(2) 0.002(2) 0.018(2) 0.000(1) C(4) 8/ 0.1336(4) 0.2857(5) -0.1266(3) 0.059(2) 0.044(3) 0.061(2) -0.003(2) 0.043(2) 0.012(2) C(5) 8/ 0.0962(3) 0.3887(4) -0.0857(3) 0.053(2) 0.028(2) 0.065(3) -0.002(2) 0.036(2) 0.007(2) C(6) 8/ 0.0515(3) 0.3126(4) -0.0341(3) 0.046(2) 0.034(2) 0.048(2) -0.003(2) 0.030(2) -0.001(2)

Journal ArticleDOI
TL;DR: Moine et al. as mentioned in this paper showed that a binuclear copper complex exhibiting a symmetry center and two diisopropylsalicylic acid molecules can be obtained by slow evaporation of this solution.
Abstract: C72H84C112N4O12, triclinic, Pi (No. 2), a = 10.197(1) k,b= 11.819(4) À, c = 14.786(3) Â, a = 99.95(1)°, P = 93.57(1)°, y = 105.07(1)°, V = 1684.1 Â, Z = 1, pm = 1.28(2) g-cm\", Rgt(F) = 0.048, wRKt

Journal ArticleDOI
TL;DR: Uecker et al. as mentioned in this paper used a solid state reaction of the single oxides and carbonates, respectively, to synthesize a mixture of SrO, La2Ü3 and Ga2C>3 in a molar ratio of 4 : 1 : 1.
Abstract: GaLa0 5 Sr 2 , tetragonal, /4/mcm (No. 140), a = 6.9339(4) Ä, c = 11.2823(8) Ä, V = 542.4 Ä3 , Z = 4, R(P) = 0.018, wR(P) = 0.027, R(l) = 0.031, Τ = 295 Κ. Sr( l ) 8/i 0.5 0.181(1) ;c+l/2 0 0.017 L a ( l ) 8 h 0.5 0.181 .1+1/2 0 0.017 Sr(2) 4a 0 0 1/4 0.015 Ga( l ) 4b 0 1/2 1/4 0.018 O ( l ) 4c 0 0 0 0.032 0 ( 2 ) 16/ 0.143(8) x+l/2 0.642(5) 0.035 Source of material Sr2LaGa05 melts incongruently, therefore it was synthesised by solid state reaction of the single oxides and carbonates, respectively. They were of 4N and 5N quality and the mixture of them was prepared containing SrO, La2Ü3 and Ga2C>3 in a molar ratio of 4 :1 :1 . The sample was sintered in air in a closed Pt crucible up to 1573 Κ for 20 h. This reaction led to a homogeneous grey product [1], Because of the incongruent melting of SrLaGaC>4 one of the most favoured candidates for substrates for high-Tc superconductors primary crystallisation of S^LaGaOs takes place when starting the crystal growth from the stoichiometric melt composition SrLaGaCU. References 1. Uecker, R.; Reiche, P.; Ganschow, S.; Uecker, D.-C.; Schultze, D.: Investigation of crystal growth of SrPrGaOi and SrLaGaCU. Acta Phys. Pol. A92 (1997) 23. 2. Mansmann, M.: Crystal structure of tribariumpentaoxymetallates (IV) and isostrctural compounds. Z. Anorg. Allg. Chem. 339 (1965) 52. 3. Nguyen Trat Dinh, Fava, J . ; Le Flam, G.: Etude structural et optique de la phase S^GdGaOs dopee a l'europium trivalent. Ζ. Anorg. Allg. Chem. 433(1977) 275-283. 4. Izumi, F.: \"The Rietveld Method\", ed. by R. A. Young, Oxford University Press, Oxford 1993. Sr/La * Correspondence author (e-mail: tm.gesing@mineralogie.uni-hannover.de)

Journal ArticleDOI
TL;DR: Rb3Fe2Se4 as mentioned in this paper is a single phase product of Rb2Se, freshly reduced Fe and Se at 1073 К in an evacuated silica ampoule.
Abstract: Fe2Rb3Se4, orthorhombic, Pnma (No. 62), a = 7.691(4) A, b = 11.403(6) Ä, с = 12.471 (7) Ä, V = 1093.7 Ä, Ζ = 4, Rgt(F) = 0.052, wR(F) = 0.048, T294 K. Source of material Needle shaped crystals of Rb3Fe2Se4 were obtained as single phase product by reacting an intimate mixture of Rb2Se, freshly reduced Fe and Se at 1073 К in an evacuated silica ampoule. The compound shows metallic lustre and is sensitive to humid air. Table 2. Atomic coordinates and displacement parameters (in Ä). Discussion The crystal structure of Rb3Fe2Se4 is isotypic with Na3Fe2S4 [ 1 ]. It is characterized by corrugated infinite anionic chains of edge sharing FeSe4 tetrahedra which run along [010] and are separated from each other through hexacoordinated rubidium cations. Rb(l) is in a fairly regular octahedral coordination through Se while the coordination of Rb(2) is highly distorted. Individual Fe—Se bond distances are close to the average of 2.436(3) A, a value somewhat larger thjn that observed in the isostructural selenoferrate Na3Fe2Se4 (d = 2.416(1} Ä) [2]. The Fe—Fe distances within the chain are 2.802(5) A and 3.083(5) A, respectively which in contrast to Na3Fe2Se4 Noe—Fe = 2.834(2) A and 2.826(2) Ä) indicates the formation of distinct Fe-Fe pairs. In K3Fe2Se4 which was reported recently [3] this trend is less pronounced {dpe—Fe = 2.871 Ä and 3.002 Ä, respectively). These findings are paralleled with the isostructural sulfides A3Fe2S4 (A = Na [1], К and Rb [4]. Cs3Fe2S4 [4] and Cs3Fe2Se4 [5] though isopuntal with the Na3Fe2S4 structure type adopt as can be shown by STRUCTURE TIDY [6] a different structure with almost linear chalcogenoferrate chains. Table 1. Data collection and handling. Crystal: metallic needle, size 0.03 χ 0.05 χ 0.20 mm Wavelength: Mo Ka radiation (0.71073 A) μ: 286.85 cm\" Diffractometer, scan mode: Enraf-Nonius CAD4, 0/2Θ 26max: 53.92° N(hkl)measured, N(hkl)unique: 1397, 1240 Criterion for /0bs, N(hkl)gt: /obs > 3 a(70bs), 769 N(param) refined: 47 Programs: MolEN [7], ATOMS [8] Atom Site χ у ζ Uu ί/22 t/33 Un t/13 Uli Rb(l) 4c 0.0858(4) 1/4 0.7688(2) 0.014(1) 0.012(1) 0.019(1) 0 0.001(1) 0 Rb(2) 8 d 0.0700(3) 0.4296(2) 0.1365(1) 0.0220(9) 0.031(1) 0.0185(8) 0.010(1) -0.0012(9) 0.000(1) Fe 8 d 0.0490(3) 0.3729(2) 0.4708(2) 0.011(1) 0.004(1) 0.010(1) 0.000(1) -0.001(1) -0.001(1) Se(l) 4 с 0.2907(3) 1/4 0.5332(2) 0.009(1) 0.012(1) 0.012(1) 0 -0.002(1) 0 Se(2) 4c 0.4115(4) 1/4 0.1624(2) 0.016(1) 0.008(1) 0.013(1) 0 0.004(1) 0 Se(3) 8 d 0.1500(2) 0.5558(2) 0.3918(1) 0.0147(8) 0.015(1) 0.0153(7) 0.001(1) 0.0074(8) 0.001(1) * Correspondence author (e-mail: kurt.klepp@jk.uni-linz.ac.at)