scispace - formally typeset
Journal ArticleDOI

Bond Strengths of Ethylene and Acetylene

TLDR
Negative ion photoelectron spectroscopy and gas-phase proton transfer kinetics were employed to determine the CH bond dissociation energies of acetylene, ethylene, and vinyl radical.
Abstract
Negative ion photoelectron spectroscopy and gas-phase proton transfer kinetics were employed to determine the CH bond dissociation energies of acetylene, ethylene, and vinyl radical: Do(HCC-H) = 131.3 f 0.7 kcal mol-', Do(CH2CH-H) = 109.7 f 0.8 kcal mol-', and Do(CH2C-H) = 81.0 f 3.5 kcal mol-'. The strengths of each of the other CH and CC bonds in acetylene and ethylene and their fragments were derived. The energy required to isomerize acetylene to vinylidene was also determined: HCWH - H2C=C: AHbo = 47.4 f 4.0 kcal mol-'. As part of this study, proton transfer kinetics in a flowing afterglow/selected-ion flow tube apparatus were used to refine the acidities of ethylene, acetylene, and vinyl. The gas-phase acidity of acetylene was tied to the precisely known values for hydrogen fluoride, AGsdd298(HF) = 365.6 f 0.2 kcal mol-', and water, AG-(H20) = 383.9 f 0.3 kcal mor', yielding AG-(HCC-H) = 369.8 f 0.6 kcal mol-'. The gas-phase acidity equilibria of acetylene with isopropyl alcohol and terr-butyl alcohol were also measured. Combined with relative acidities from the literature, these measurements yielded improved acidities for the alcohols, AGad,298( (CH3)2CHO-H) = 370.1 f 0.6 kcal mol-', AGaa298((CH3)3CO-H) = 369.3 f 0.6 kcal mol-', hGadd,298(C2HSO-H) = 372.0 f 0.6 kcal mol-', and AGacid.298(CH30-H) = 375.1 f 0.6 kcal mol-'. The gas-phase acidity of ethylene was measured relative to ammonia, AGacid.298(NH3) = 396.5 f 0.4 kcal mol-', giving AGadJ98(C2H1) = 401.0 f 0.5 kcal mol-'. The gas-phase acidity of vinyl radical was bracketed, 375.1 f 0.6 kcal mol-' I AGaaB8(CH2C-H) I 380.4 f 0.3 kcal mol-'. The electron affinities of ethynyl, vinyl, and vinylidene radicals were determined by photoelectron spectroscopy: EA(HCC) = 2.969 f 0.010 eV, EA(CH2CH) = 0.667 f 0.024 eV, and EA(CH2C) = 0.490 f 0.006 eV.

read more

Citations
More filters
Journal ArticleDOI

Gaussian-2 theory for molecular energies of first- and second-row compounds

TL;DR: The Gaussian-2 theoretical procedure (G2 theory) as discussed by the authors was proposed to calculate molecular energies (atomization energies, ionization potentials, and electron affinities) of compounds containing first and second-row atoms.
Journal ArticleDOI

Bond Dissociation Energies of Organic Molecules

TL;DR: In this paper, a list of reliable bond energies that are based on a set of critically evaluated experiments is provided and a brief description of the three most important experimental techniques for measuring bond energies is provided.
Journal Article

Bond dissociation energies of organic molecules

TL;DR: This Account presents a list of reliable bond energies that are based on a set of critically evaluated experiments and demonstrates how these experimental data can be applied to yield the heats of formation of organic radicals and the bond enthalpies of more than 100 representative organic molecules.
Journal ArticleDOI

Atomic and molecular electron affinities: photoelectron experiments and theoretical computations.

TL;DR: Theoretical D determination of Electron Affinities and Statistical Analysis of DFT Results ThroughComparisons to Experiment and Other theoretical Methods and Specific Theoretical Successes 251E.

Coefficients for calculating thermodynamic and transport properties of individual species

TL;DR: In this article, a library of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients for 1130 solid, liquid, and gaseous species.
Related Papers (5)