scispace - formally typeset
Book ChapterDOI

Data Driven Sensing for Action Recognition Using Deep Convolutional Neural Networks

TLDR
This paper presents data-driven sensing for spatial multiplexers trained with combined mean square error (MSE) and perceptual loss using Deep convolutional neural networks and experimentally infer that the encoded information from such spatialmultiplexers can directly be used for action recognition.
Abstract
Tasks such as action recognition requires high quality features for accurate inference. But the use of high resolution and large volume of video data poses a significant challenge for inference in terms of storage and computational complexity. In addition, compressive sensing as a potential solution to the aforementioned problems has been shown to recover signals at higher compression ratios with loss in information. Hence, a framework is required that performs good quality action recognition on compressively sensed data. In this paper, we present data-driven sensing for spatial multiplexers trained with combined mean square error (MSE) and perceptual loss using Deep convolutional neural networks. We employ subpixel convolutional layers with the 2D Convolutional Encoder-Decoder model, that learns the downscaling filters to bring the input from higher dimension to lower dimension in encoder and learns the reverse, i.e. upscaling filters in the decoder. We stack this Encoder with Inflated 3D ConvNet and train the cascaded network with cross-entropy loss for Action recognition. After encoding data and undersampling it by over 100 times (10 \(\times \) 10) from the input size, we obtain 75.05% accuracy on UCF-101 and 50.39% accuracy on HMDB-51 with our proposed architecture setting the baseline for reconstruction free action recognition with data-driven sensing using deep learning. We experimentally infer that the encoded information from such spatial multiplexers can directly be used for action recognition.

read more

Citations
More filters
Journal ArticleDOI

Deep learning for compressive sensing: a ubiquitous systems perspective

TL;DR: In this article , the authors identify main possible ways in which CS and DL can interplay, extract key ideas for making CS-DL efficient, and derive guidelines for the future evolution of CS/DL within the ubiquitous computing domain.
Posted Content

Deep Learning Techniques for Compressive Sensing-Based Reconstruction and Inference - A Ubiquitous Systems Perspective.

TL;DR: In this article, the authors identify main possible ways in which CS and DL can interplay, extract key ideas for making CS-DL efficient, and derive guidelines for future evolution of CS-D within the ubicomp domain.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings ArticleDOI

Learning Spatiotemporal Features with 3D Convolutional Networks

TL;DR: The learned features, namely C3D (Convolutional 3D), with a simple linear classifier outperform state-of-the-art methods on 4 different benchmarks and are comparable with current best methods on the other 2 benchmarks.
Book ChapterDOI

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

TL;DR: In this paper, the authors combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image style transfer, where a feedforward network is trained to solve the optimization problem proposed by Gatys et al. in real-time.
Related Papers (5)