scispace - formally typeset
Open AccessDissertation

Detection and Mitigation of Cyber Attacks on Time Synchronization Protocols for the Smart Grid

Bassam Moussa
Reads0
Chats0
TLDR
This thesis focuses on the substation, a basic block of the smart grid system, along with its recommended time synchronization mechanism - the Precision Time Protocol (PTP) - in order to address threats associated with PTP, and proposes practical and efficient detection, prevention, mitigation techniques and methodologies that will harden and enhance the security and usability of PTP in a substation.
Abstract
The current electric grid is considered as one of the greatest engineering achievements of the twentieth century. It has been successful in delivering power to consumers for decades. Nevertheless, the electric grid has recently experienced several blackouts that raised several concerns related to its availability and reliability. The aspiration to provide reliable and efficient energy, and contribute to environment protection through the increasing utilization of renewable energies are driving the need to deploy the grid of the future, the smart grid. It is expected that this grid will be self-healing from power disturbance events, operating resiliently against physical and cyber attack, operating efficiently, and enabling new products and services. All these call for a grid with more Information and Communication Technologies (ICT). As such, power grids are increasingly absorbing ICT technologies to provide efficient, secure and reliable two-way communication to better manage, operate, maintain and control electric grid components. On the other hand, the successful deployment of the smart grid is predicated on the ability to secure its operations. Such a requirement is of paramount importance especially in the presence of recent cyber security incidents. Furthermore, those incidents are subject to an augment with the increasing integration of ICT technologies and the vulnerabilities they introduce to the grid. The exploitation of these vulnerabilities might lead to attacks that can, for instance, mask the system observability and initiate cascading failures resulting in undesirable and severe consequences. In this thesis, we explore the security aspects of a key enabling technology in the smart grid, accurate time synchronization. Time synchronization is an immense requirement across the domains of the grid, from generation to transmission, distribution, and consumer premises. We focus on the substation, a basic block of the smart grid system, along with its recommended time synchronization mechanism - the Precision Time Protocol (PTP) - in order to address threats associated with PTP, and propose practical and efficient detection, prevention, mitigation techniques and methodologies that will harden and enhance the security and usability of PTP in a substation. In this respect, we start this thesis with a security assessment of PTP that identifies PTP security concerns, and then address those concerns in the subsequent chapters. We tackle the following main threats associated with PTP: 1) PTP vulnerability to fake timestamp injection through a compromised component 2) PTP vulnerability to the delay attack and 3) The lack of a mechanism that secures the PTP network. Next, and as a direct consequence of the importance of time synchronization in the smart grid, we consider the wide area system to demonstrate the vulnerability of relative data alignment in Phasor Data Concentrators to time synchronization attacks. These problems will be extensively studied throughout this thesis, followed by discussions that highlight open research directions worth further investigations.

read more

Citations
More filters
Journal ArticleDOI

Energy function analysis for power system stability

TL;DR: In this paper, the authors present an energy fundiment analysis for power system stability, focusing on the reliability of the power system and its reliability in terms of power system performance and reliability.
References
More filters
Journal ArticleDOI

On the security of public key protocols

TL;DR: Several models are formulated in which the security of protocols can be discussed precisely, and algorithms and characterizations that can be used to determine protocol security in these models are given.
BookDOI

Power System State Estimation : Theory and Implementation

TL;DR: In this paper, Peters and Wilkinson this paper proposed a WLS state estimation algorithm based on the Nodal Variable Formulation (NVF) and the Branch Variable Factorization (BVF).
Journal ArticleDOI

UPPAAL in a Nutshell

TL;DR: A detailed user guide is given which describes how to use the various tools of Uppaal version 2.02 to construct abstract models of a real-time system, to simulate its dynamical behavior, to specify and verify its safety and bounded liveness properties in terms of its model.

The omnet++ discrete event simulation system

TL;DR: OMNeT++ is fully programmable and modular, and it was designed from the ground up to support modeling very large networks built from reusable model components.
Journal ArticleDOI

IEEE Reliability Test System

TL;DR: In this article, a load model, generation system, and transmission network which can be used to test or compare methods for reliability analysis of power systems is described. But the authors focus on the reliability of the power system and do not consider the transmission system.
Related Papers (5)