scispace - formally typeset
Open AccessBook

Geometric Algorithms and Combinatorial Optimization

TLDR
In this article, the Fulkerson Prize was won by the Mathematical Programming Society and the American Mathematical Society for proving polynomial time solvability of problems in convexity theory, geometry, and combinatorial optimization.
Abstract
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and - in particular - combinatorial optimization. It offers a unifying approach based on two fundamental geometric algorithms: - the ellipsoid method for finding a point in a convex set and - the basis reduction method for point lattices. The ellipsoid method was used by Khachiyan to show the polynomial time solvability of linear programming. The basis reduction method yields a polynomial time procedure for certain diophantine approximation problems. A combination of these techniques makes it possible to show the polynomial time solvability of many questions concerning poyhedra - for instance, of linear programming problems having possibly exponentially many inequalities. Utilizing results from polyhedral combinatorics, it provides short proofs of the poynomial time solvability of many combinatiorial optimization problems. For a number of these problems, the geometric algorithms discussed in this book are the only techniques known to derive polynomial time solvability. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson Prize, awarded by the Mathematical Programming Society and the American Mathematical Society.

read more

Citations
More filters
Book

Linear Matrix Inequalities in System and Control Theory

Edwin E. Yaz
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Book

Graphical Models, Exponential Families, and Variational Inference

TL;DR: The variational approach provides a complementary alternative to Markov chain Monte Carlo as a general source of approximation methods for inference in large-scale statistical models.
Book

Approximation Algorithms

TL;DR: Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field.
Journal ArticleDOI

Semidefinite programming

TL;DR: A survey of the theory and applications of semidefinite programs and an introduction to primaldual interior-point methods for their solution are given.
Journal ArticleDOI

Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming

TL;DR: This algorithm gives the first substantial progress in approximating MAX CUT in nearly twenty years, and represents the first use of semidefinite programming in the design of approximation algorithms.