scispace - formally typeset
Open AccessBook

Nonlinear Multiobjective Optimization

TLDR
This paper is concerned with the development of methods for dealing with the role of symbols in the interpretation of semantics.
Abstract
Preface. Acknowledgements. Notation and Symbols. Part I: Terminology and Theory. 1. Introduction. 2. Concepts. 3. Theoretical Background. Part II: Methods. 1. Introduction. 2. No-Preference Methods. 3. A Posteriori Methods. 4. A Priori Methods. 5. Interactive Methods. Part III: Related Issues. 1. Comparing Methods. 2. Software. 3. Graphical Illustration. 4. Future Directions. 5. Epilogue. References. Index.

read more

Citations
More filters
Book

Multi-Objective Optimization Using Evolutionary Algorithms

TL;DR: This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.
Journal ArticleDOI

MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition

TL;DR: Experimental results have demonstrated that MOEA/D with simple decomposition methods outperforms or performs similarly to MOGLS and NSGA-II on multiobjective 0-1 knapsack problems and continuous multiobjectives optimization problems.
Book

Evolutionary algorithms for solving multi-objective problems

TL;DR: This paper presents a meta-anatomy of the multi-Criteria Decision Making process, which aims to provide a scaffolding for the future development of multi-criteria decision-making systems.
Journal ArticleDOI

Survey of multi-objective optimization methods for engineering

TL;DR: A survey of current continuous nonlinear multi-objective optimization concepts and methods finds that no single approach is superior and depends on the type of information provided in the problem, the user's preferences, the solution requirements, and the availability of software.
Journal ArticleDOI

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints

TL;DR: A reference-point-based many-objective evolutionary algorithm that emphasizes population members that are nondominated, yet close to a set of supplied reference points is suggested that is found to produce satisfactory results on all problems considered in this paper.
Related Papers (5)