Institution
Indian Institute of Technology Kanpur
Education•Kanpur, Uttar Pradesh, India•
About: Indian Institute of Technology Kanpur is a(n) education organization based out in Kanpur, Uttar Pradesh, India. It is known for research contribution in the topic(s): Reynolds number & Population. The organization has 13383 authors who have published 28605 publication(s) receiving 576873 citation(s).
Topics: Reynolds number, Population, Heat transfer, Catalysis, Nusselt number
Papers published on a yearly basis
Papers
More filters
TL;DR: This paper suggests a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties, and modify the definition of dominance in order to solve constrained multi-objective problems efficiently.
Abstract: Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN/sup 3/) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN/sup 2/) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed.
30,928 citations
Book•
01 Jan 1993TL;DR: In-depth, self-contained treatments of shortest path, maximum flow, and minimum cost flow problems, including descriptions of polynomial-time algorithms for these core models are presented.
Abstract: A comprehensive introduction to network flows that brings together the classic and the contemporary aspects of the field, and provides an integrative view of theory, algorithms, and applications. presents in-depth, self-contained treatments of shortest path, maximum flow, and minimum cost flow problems, including descriptions of polynomial-time algorithms for these core models. emphasizes powerful algorithmic strategies and analysis tools such as data scaling, geometric improvement arguments, and potential function arguments. provides an easy-to-understand descriptions of several important data structures, including d-heaps, Fibonacci heaps, and dynamic trees. devotes a special chapter to conducting empirical testing of algorithms. features over 150 applications of network flows to a variety of engineering, management, and scientific domains. contains extensive reference notes and illustrations.
8,345 citations
TL;DR: Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously are investigated and suggested to be extended to higher dimensional and more difficult multiobjective problems.
Abstract: In trying to solve multiobjective optimization problems, many traditional methods scalarize the objective vector into a single objective. In those cases, the obtained solution is highly sensitive to the weight vector used in the scalarization process and demands that the user have knowledge about the underlying problem. Moreover, in solving multiobjective problems, designers may be interested in a set of Pareto-optimal points, instead of a single point. Since genetic algorithms (GAs) work with a population of points, it seems natural to use GAs in multiobjective optimization problems to capture a number of solutions simultaneously. Although a vector evaluated GA (VEGA) has been implemented by Schaffer and has been tried to solve a number of multiobjective problems, the algorithm seems to have bias toward some regions. In this paper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche and speciation method to find multiple Pareto-optimal points simultaneously. The proof-of-principle results obtained on three problems used by Schaffer and others suggest that the proposed method can be extended to higher dimensional and more difficult multiobjective problems. A number of suggestions for extension and application of the algorithm are also discussed.
5,861 citations
TL;DR: This paper provides a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions and shows that elitism is shown to be an important factor for improving evolutionary multiobjectives search.
Abstract: In this paper, we provide a systematic comparison of various evolutionary approaches to multiobjective optimization using six carefully chosen test functions. Each test function involves a particular feature that is known to cause difficulty in the evolutionary optimization process, mainly in converging to the Pareto-optimal front (e.g., multimodality and deception). By investigating these different problem features separately, it is possible to predict the kind of problems to which a certain technique is or is not well suited. However, in contrast to what was suspected beforehand, the experimental results indicate a hierarchy of the algorithms under consideration. Furthermore, the emerging effects are evidence that the suggested test functions provide sufficient complexity to compare multiobjective optimizers. Finally, elitism is shown to be an important factor for improving evolutionary multiobjective search.
4,455 citations
18 Sep 2000
TL;DR: Simulation results on five difficult test problems show that the proposed NSGA-II, in most problems, is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to PAES and SPEA--two other elitist multi-objective EAs which pay special attention towards creating a diverse Paretimal front.
Abstract: Multi-objective evolutionary algorithms which use non-dominated sorting and sharing have been mainly criticized for their (i) O(MN3) computational complexity (where M is the number of objectives and N is the population size), (ii) non-elitism approach, and (iii) the need for specifying a sharing parameter. In this paper, we suggest a non-dominated sorting based multi-objective evolutionary algorithm (we called it the Non-dominated Sorting GA-II or NSGA-II) which alleviates all the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Second, a selection operator is presented which creates a mating pool by combining the parent and child populations and selecting the best (with respect to fitness and spread) N solutions. Simulation results on five difficult test problems show that the proposed NSGA-II, in most problems, is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to PAES and SPEA--two other elitist multi-objective EAs which pay special attention towards creating a diverse Pareto-optimal front. Because of NSGA-II's low computational requirements, elitist approach, and parameter-less sharing approach, NSGA-II should find increasing applications in the years to come.
4,442 citations
Authors
Showing all 13383 results
Name | H-index | Papers | Citations |
---|---|---|---|
Prashant V. Kamat | 140 | 725 | 79259 |
C. N. R. Rao | 133 | 1646 | 86718 |
Kalyanmoy Deb | 112 | 713 | 122802 |
Arun Majumdar | 102 | 459 | 52464 |
Charu C. Aggarwal | 100 | 624 | 45066 |
A. Kumar | 96 | 505 | 33973 |
Kishor S. Trivedi | 95 | 698 | 36816 |
Sandeep Kumar | 94 | 1563 | 38652 |
Abhinav Gupta | 93 | 249 | 39876 |
Praveen Kumar | 88 | 1339 | 35718 |
Rajendra Prasad | 86 | 945 | 29526 |
Lawrence Carin | 84 | 949 | 31928 |
Manish Sharma | 82 | 1407 | 33361 |
Narayanaswamy Balakrishnan | 82 | 1348 | 42669 |
Michael M. Thackeray | 82 | 275 | 29082 |