scispace - formally typeset
Open AccessProceedings Article

Optimization as a Model for Few-Shot Learning

Reads0
Chats0
TLDR
In this paper, an LSTM-based meta-learner model is proposed to learn the exact optimization algorithm used to train another learner neural network in the few-shot regime.
Abstract
Though deep neural networks have shown great success in the large data domain, they generally perform poorly on few-shot learning tasks, where a model has to quickly generalize after seeing very few examples from each class. The general belief is that gradient-based optimization in high capacity models requires many iterative steps over many examples to perform well. Here, we propose an LSTM-based meta-learner model to learn the exact optimization algorithm used to train another learner neural network in the few-shot regime. The parametrization of our model allows it to learn appropriate parameter updates specifically for the scenario where a set amount of updates will be made, while also learning a general initialization of the learner network that allows for quick convergence of training. We demonstrate that this meta-learning model is competitive with deep metric-learning techniques for few-shot learning.

read more

Citations
More filters
Proceedings Article

Model-agnostic meta-learning for fast adaptation of deep networks

TL;DR: An algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning is proposed.
Proceedings Article

Prototypical Networks for Few-shot Learning

TL;DR: Prototypical Networks as discussed by the authors learn a metric space in which classification can be performed by computing distances to prototype representations of each class, and achieve state-of-the-art results on the CU-Birds dataset.
Proceedings ArticleDOI

Learning Transferable Architectures for Scalable Image Recognition

TL;DR: NASNet as discussed by the authors proposes to search for an architectural building block on a small dataset and then transfer the block to a larger dataset, which enables transferability and achieves state-of-the-art performance.
Proceedings ArticleDOI

Learning to Compare: Relation Network for Few-Shot Learning

TL;DR: A conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each, which is easily extended to zero- shot learning.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Long short-term memory

TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Posted Content

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Batch Normalization as mentioned in this paper normalizes layer inputs for each training mini-batch to reduce the internal covariate shift in deep neural networks, and achieves state-of-the-art performance on ImageNet.