scispace - formally typeset
Open AccessProceedings ArticleDOI

Learning to Compare: Relation Network for Few-Shot Learning

TLDR
A conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each, which is easily extended to zero- shot learning.
Abstract
We present a conceptually simple, flexible, and general framework for few-shot learning, where a classifier must learn to recognise new classes given only few examples from each. Our method, called the Relation Network (RN), is trained end-to-end from scratch. During meta-learning, it learns to learn a deep distance metric to compare a small number of images within episodes, each of which is designed to simulate the few-shot setting. Once trained, a RN is able to classify images of new classes by computing relation scores between query images and the few examples of each new class without further updating the network. Besides providing improved performance on few-shot learning, our framework is easily extended to zero-shot learning. Extensive experiments on five benchmarks demonstrate that our simple approach provides a unified and effective approach for both of these two tasks.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

Meta-Learning With Differentiable Convex Optimization

TL;DR: The objective is to learn feature embeddings that generalize well under a linear classification rule for novel categories and this work exploits two properties of linear classifiers: implicit differentiation of the optimality conditions of the convex problem and the dual formulation of the optimization problem.
Posted Content

Generalizing from a Few Examples: A Survey on Few-Shot Learning

TL;DR: A thorough survey to fully understand Few-Shot Learning (FSL), and categorizes FSL methods from three perspectives: data, which uses prior knowledge to augment the supervised experience; model, which used to reduce the size of the hypothesis space; and algorithm, which using prior knowledgeto alter the search for the best hypothesis in the given hypothesis space.
Posted Content

Meta-Learning in Neural Networks: A Survey

TL;DR: A new taxonomy is proposed that provides a more comprehensive breakdown of the space of meta-learning methods today, including few-shot learning, reinforcement learning and architecture search, and promising applications and successes.
Proceedings ArticleDOI

Large-Scale Long-Tailed Recognition in an Open World

TL;DR: An integrated OLTR algorithm is developed that maps an image to a feature space such that visual concepts can easily relate to each other based on a learned metric that respects the closed-world classification while acknowledging the novelty of the open world.
Proceedings ArticleDOI

Meta-Transfer Learning for Few-Shot Learning

TL;DR: In this paper, the authors proposed a meta-transfer learning approach to adapt a base-learner to a new task for which only a few labeled samples are available, which learns scaling and shifting functions of DNN weights for each task.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).