scispace - formally typeset
Open AccessPosted Content

Prototype Memory for Large-scale Face Representation Learning.

TLDR
Prototype Memory as discussed by the authors uses a limited-size memory module for storing recent class prototypes and employs a set of algorithms to update it in appropriate way, which can be used with various loss functions, hard example mining algorithms and encoder architectures.
Abstract
Face representation learning using datasets with massive number of identities requires appropriate training methods. Softmax-based approach, currently the state-of-the-art in face recognition, in its usual "full softmax" form is not suitable for datasets with millions of persons. Several methods, based on the "sampled softmax" approach, were proposed to remove this limitation. These methods, however, have a set of disadvantages. One of them is a problem of "prototype obsolescence": classifier weights (prototypes) of the rarely sampled classes, receive too scarce gradients and become outdated and detached from the current encoder state, resulting in an incorrect training signals. This problem is especially serious in ultra-large-scale datasets. In this paper, we propose a novel face representation learning model called Prototype Memory, which alleviates this problem and allows training on a dataset of any size. Prototype Memory consists of the limited-size memory module for storing recent class prototypes and employs a set of algorithms to update it in appropriate way. New class prototypes are generated on the fly using exemplar embeddings in the current mini-batch. These prototypes are enqueued to the memory and used in a role of classifier weights for usual softmax classification-based training. To prevent obsolescence and keep the memory in close connection with encoder, prototypes are regularly refreshed, and oldest ones are dequeued and disposed. Prototype Memory is computationally efficient and independent of dataset size. It can be used with various loss functions, hard example mining algorithms and encoder architectures. We prove the effectiveness of the proposed model by extensive experiments on popular face recognition benchmarks.

read more

Citations
More filters
Posted Content

STC speaker recognition systems for the NIST SRE 2021.

TL;DR: In this paper, a number of diverse subsystems based on using deep neural networks as feature extractors were used for speaker verification filed in the NIST 2021 Speaker Recognition Evaluation for both fixed and open training conditions.
Book ChapterDOI

FaceMix: Transferring Local Regions for Data Augmentation in Face Recognition

TL;DR: FaceMix as mentioned in this paper is a flexible face-specific data augmentation technique that transfers a local area of an image to another image, and it can generate new images for a class, using face data from other classes, and these two modes also could be combined.
References
More filters
Book ChapterDOI

A Discriminative Feature Learning Approach for Deep Face Recognition

TL;DR: This paper proposes a new supervision signal, called center loss, for face recognition task, which simultaneously learns a center for deep features of each class and penalizes the distances between the deep features and their corresponding class centers.
Proceedings ArticleDOI

VGGFace2: A Dataset for Recognising Faces across Pose and Age

TL;DR: VGGFace2 as discussed by the authors is a large-scale face dataset with 3.31 million images of 9131 subjects, with an average of 362.6 images for each subject.
Proceedings ArticleDOI

SphereFace: Deep Hypersphere Embedding for Face Recognition

TL;DR: In this paper, the angular softmax (A-softmax) loss was proposed to learn angularly discriminative features for deep face recognition under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal interclass distance under a suitably chosen metric space.
Proceedings ArticleDOI

CosFace: Large Margin Cosine Loss for Deep Face Recognition

TL;DR: In this article, the authors proposed a large margin cosine loss (LMCL), which normalizes both features and weight vectors to remove radial variations, based on which a cosine margin term is introduced to further maximize the decision margin in the angular space.
Book ChapterDOI

MS-Celeb-1M: A Dataset and Benchmark for Large-Scale Face Recognition

TL;DR: In this article, the authors proposed a benchmark task to recognize one million celebrities from their face images, by using all the possibly collected face images of this individual on the web as training data.
Related Papers (5)