scispace - formally typeset
Open AccessDissertation

Quasilattice-based models for structural constraints on virus architecture

TLDR
This study shows how classifying the possible transitions between the quasilattices modelling the structure of the virus before and after the transition allows us to derive information on the most likely transition paths taken by the protein shell during the structural transformation.
Abstract
Crick and Watson were the first to recognise the importance of symmetry in the structures of viral capsids. This observation was the departure point for Caspar-Klug’s theory in which the possible positions and orientations of the protein building blocks are predicted and classified in terms of T-numbers. Whilst this theory predicts the layouts of the protein containers, it provides no information on the thickness of the capsid or its surface features. The creation of icosahedrally invariant point arrays via affine extension of the icosahedral symmetry group and their mapping to viral capsids in [37] has shown that they provide geometrical constraints on viral structure that not only correlate positioning of proteins on the capsid, but also relate structural features on different radial levels including genome organisation. In this study we have extended this approach using the quasilattices embedding these point arrays. To derive further geometric constraints on virus architecture we firstly show how classifying the possible transitions between the quasilattices modelling the structure of the virus before and after the transition allows us to derive information on the most likely transition paths taken by the protein shell during the structural transformation. Next, a new algorithm matching tile sets to viral capsids has been implemented to investigate further the geometrical constraints quasilattices place on these structures over and above the point arrays in [37].

read more

References
More filters
Journal ArticleDOI

van der Waals Volumes and Radii

Journal ArticleDOI

The quickhull algorithm for convex hulls

TL;DR: This article presents a practical convex hull algorithm that combines the two-dimensional Quickhull algorithm with the general-dimension Beneath-Beyond Algorithm, and provides empirical evidence that the algorithm runs faster when the input contains nonextreme points and that it used less memory.
Journal ArticleDOI

Physical Principles in the Construction of Regular Viruses

TL;DR: The authors' designs obey strict icosahedral symmetry, with the asymmetric unit in each case containing a heterodimer that comprises one subunit from each of the two components.
Journal ArticleDOI

An Iterative Procedure for the Polygonal Approximation of Plane Curves

TL;DR: An approximation algorithm is presented which uses an iterative method to produce polygons with a small—but not minimum—number of vertices that lie on the given curve that justifies the abandonment of the minimum-vertices criterion.
Posted Content

Sphere packings I

TL;DR: A program to prove the Kepler conjecture on sphere packings is described and it is shown that every Delaunay star that satisfies a certain regularity condition satisfies the conjecture.
Related Papers (5)