scispace - formally typeset
Open AccessJournal Article

Random Trees, Levy Processes and Spatial Branching Processes

Reads0
Chats0
TLDR
In this article, the genealogical structure of general critical or subcritical continuous-state branching processes is investigated, and it is shown that whenever a sequence of rescaled Galton-Watson processes converges in distribution, their genealogies also converge to the continuous branching structure coded by the appropriate height process.
Abstract
We investigate the genealogical structure of general critical or subcritical continuous-state branching processes. Analogously to the coding of a discrete tree by its contour function, this genealogical structure is coded by a real-valued stochastic process called the height process, which is itself constructed as a local time functional of a Levy process with no negative jumps. We present a detailed study of the height process and of an associated measure-valued process called the exploration process, which plays a key role in most applications. Under suitable assumptions, we prove that whenever a sequence of rescaled Galton-Watson processes converges in distribution, their genealogies also converge to the continuous branching structure coded by the appropriate height process. We apply this invariance principle to various asymptotics for Galton-Watson trees. We then use the duality properties of the exploration process to compute explicitly the distribution of the reduced tree associated with Poissonnian marks in the height process, and the finite-dimensional marginals of the so-called stable continuous tree. This last calculation generalizes to the stable case a result of Aldous for the Brownian continuum random tree. Finally, we combine the genealogical structure with an independent spatial motion to develop a new approach to superprocesses with a general branching mechanism. In this setting, we derive certain explicit distributions, such as the law of the spatial reduced tree in a domain, consisting of the collection of all historical paths that hit the boundary.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Analytic Combinatorics

TL;DR: This text can be used as the basis for an advanced undergraduate or a graduate course on the subject, or for self-study, and is certain to become the definitive reference on the topic.
BookDOI

Combinatorial Stochastic Processes

Jim Pitman
TL;DR: In this paper, the Brownian forest and the additive coalescent were constructed for random walks and random forests, respectively, and the Bessel process was used for random mappings.
Book

Probability on Trees and Networks

TL;DR: In this article, the authors present a state-of-the-art account of probability on networks, including percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks.
Journal ArticleDOI

Random trees and applications

TL;DR: An introduction to the theory of the Brownian snake, which combines the genealogical structure of random real trees with independent spatial motions, and some applications to a class of semilinear partial differential equations.
Journal ArticleDOI

Uniqueness and universality of the Brownian map

TL;DR: In this article, a random planar map Mn which is uniformly distributed over the class of all rooted q-angulations with n faces is considered, where mn is the vertex set of Mn, which is equipped with the graph distance dgr.
References
More filters

An Introduction To Probability Theory And Its Applications

TL;DR: A First Course in Probability (8th ed.) by S. Ross is a lively text that covers the basic ideas of probability theory including those needed in statistics.
Book

Limit Theorems for Stochastic Processes

TL;DR: In this article, the General Theory of Stochastic Processes, Semimartingales, and Stochastically Integrals is discussed and the convergence of Processes with Independent Increments is discussed.
Book

Markov Processes: Characterization and Convergence

TL;DR: In this paper, the authors present a flowchart of generator and Markov Processes, and show that the flowchart can be viewed as a branching process of a generator.