scispace - formally typeset
Open AccessProceedings Article

Structured and efficient variational deep learning with matrix Gaussian posteriors

Reads0
Chats0
TLDR
A variational Bayesian neural network where the parameters are governed via a probability distribution on random matrices is introduced and "pseudo-data" (Snelson & Ghahramani, 2005) is incorporated in this model, which allows for more efficient posterior sampling while maintaining the properties of the original model.
Abstract
We introduce a variational Bayesian neural network where the parameters are governed via a probability distribution on random matrices. Specifically, we employ a matrix variate Gaussian (Gupta & Nagar, 1999) parameter posterior distribution where we explicitly model the covariance among the input and output dimensions of each layer. Furthermore, with approximate covariance matrices we can achieve a more efficient way to represent those correlations that is also cheaper than fully factorized parameter posteriors. We further show that with the "local reprarametrization trick" (Kingma et al., 2015) on this posterior distribution we arrive at a Gaussian Process (Rasmussen, 2006) interpretation of the hidden units in each layer and we, similarly with (Gal & Ghahramani, 2015), provide connections with deep Gaussian processes. We continue in taking advantage of this duality and incorporate "pseudo-data" (Snelson & Ghahramani, 2005) in our model, which in turn allows for more efficient posterior sampling while maintaining the properties of the original model. The validity of the proposed approach is verified through extensive experiments.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

An Introduction to Variational Autoencoders.

TL;DR: This work provides an introduction to variational autoencoders and some important extensions, which provide a principled framework for learning deep latent-variable models and corresponding inference models.
Posted Content

Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

TL;DR: A large-scale benchmark of existing state-of-the-art methods on classification problems and the effect of dataset shift on accuracy and calibration is presented, finding that traditional post-hoc calibration does indeed fall short, as do several other previous methods.
Journal ArticleDOI

Leveraging uncertainty information from deep neural networks for disease detection.

TL;DR: Drop-out based Bayesian uncertainty measures for DL in diagnosing diabetic retinopathy (DR) from fundus images are evaluated and it is shown that it captures uncertainty better than straightforward alternatives and that uncertainty informed decision referral can improve diagnostic performance.
Proceedings Article

Overcoming Catastrophic Forgetting by Incremental Moment Matching

TL;DR: IMM incrementally matches the moment of the posterior distribution of the neural network which is trained on the first and the second task, respectively to make the search space of posterior parameter smooth.
References
More filters
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Proceedings Article

Auto-Encoding Variational Bayes

TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Posted Content

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.