scispace - formally typeset
Journal ArticleDOI

The analysis of incomplete data using stochastic covariates

TLDR
In this article, a stochastic model for tumour growth and additive competing risks of death is proposed to estimate the incidence rate for occult tumours in carcinogenicity trials.
Abstract
In the development of many diseases there are often associated random variables which continuously reflect the progress of a subject towards the final expression of the disease (failure). At any given time these processes, which we call stochastic covariates, may provide information about the current hazard and the remaining time to failure. Likewise, in situations when the specific times of key prior events are not known, such as the time of onset of an occult tumour or the time of infection with HIV-1, it may be possible to identify a stochastic covariate which reveals, indirectly, when the event of interest occurred. The analysis of carcinogenicity trials which involve occult tumours is usually based on the time of death or sacrifice and an indicator of tumour presence for each animal in the experiment. However, the size of an occult tumour observed at the endpoint represents data concerning tumour development which may convey additional information concerning both the tumour incidence rate and the rate of death to which tumour-bearing animals are subject. We develop a stochastic model for tumour growth and suggest different ways in which the effect of this growth on the hazard of failure might be modelled. Using a combined model for tumour growth and additive competing risks of death, we show that if this tumour size information is used, assumptions concerning tumour lethality, the context of observation or multiple sacrifice times are no longer necessary in order to estimate the tumour incidence rate. Parametric estimation based on the method of maximum likelihood is outlined and is applied to simulated data from the combined model. The results of this limited study confirm that use of the stochastic covariate tumour size results in more precise estimation of the incidence rate for occult tumours. Dans le developpement de plusieurs maladies il y a souvent des variables alleatoires associees qui refletent continuellemement le progres d'un sujet vers l'expression finale de la maladie (echec). A un moment donne, ces processus, que nous appelons covariables stochastiques, peuvent fournir de l'information sur le risque actuel et le temps restant jusqu'a l'echec. De měme, dans des situations ou les temps specifiques d'evěnements cles passes ne sont pas connus, tel que le temps des premieres attaques d'une tumeur occulte ou le temps d'infection au HIV-1, il peut ětre possible d'identifier une covariable stochastique qui revele indirectement quand l'evěnement d'interět est survenu. L'analyse de tests de cancerogeneite qui impliquent des tumeurs occultes est habituellement basee sur les temps de mort ou de sacrifice de chaque animal et sur un indicateur de la presence de tumeurs pour chacun des animaux de l'experience. Cependant, la taille d'une tumeur occulte observee a la fin de l'experience represente aussi une source de donnees concemant le developpement des tumeurs qui peut procurer de l'information additionnelle a la fois sur le taux d'incidence et sur le taux de mortalite auquel les animaux porteurs de tumeurs sont sujets. Nous developpons un modele stochastique pour la croissance des tumeurs et nous suggerons differentes facons selon lesquelles l'effet de cette croissance sur le risque d'echec pourrait ětre modelise. Utilisant un modele combine pour la croissance de la tumeur et les risques de mort additifs et concurrents, nous montrons que si la taille de la tumeur est utilisee, des hypotheses sur la mortalite des tumeurs, le contexte de l'observation ou les temps multiples de sacrifices ne sont plus necessaires pour estimer le taux d'incidence des tumeurs. Une estimation parametrique basee sur la methode du maximum de vraissemblance est esquissee et est appliquee a des donnees simulees a partir du modele combine. Les resultats de cette etude limitee confirment que l'utilisation de la covariable stochastique taille des tumeurs, procure une estimation plus precise du taux d'incidence des tumeurs occultes.

read more

Citations
More filters
Journal ArticleDOI

Modeling Tumor Growth with Random Onset

Paul S. Albert, +1 more
- 01 Dec 2003 - 
TL;DR: A class of linear and nonlinear growth models for jointly modeling tumor onset and growth in this situation are proposed and it is shown that this approach has good small‐sample properties for testing and is robust to some key unverifiable modeling assumptions.
Journal ArticleDOI

Bayesian modeling of incidence and progression of disease from cross-sectional data.

TL;DR: Bayesian discrete‐time stochastic models are developed for inference from cross‐sectional data consisting of the age at first diagnosis, the current presence of disease, and one or more surrogates of disease severity to investigate factors related to disease incidence and progression.
References
More filters

Regression models and life tables (with discussion

David Cox
TL;DR: The drum mallets disclosed in this article are adjustable, by the percussion player, as to balance, overall weight, head characteristics and tone production of the mallet, whereby the adjustment can be readily obtained.
Journal ArticleDOI

Two‐Event Model for Carcinogenesis: Biological, Mathematical, and Statistical Considerations

TL;DR: A two-mutation model for carcinogenesis is reviewed and a general solution to the model with time-dependent parameters is developed, and its use is illustrated by application to data from an experiment in which rats exposed to radon developed lung tumors.
Journal ArticleDOI

Acquired immunodeficiency syndrome (aids)-free time after human immunodeficiency virus type 1 (hiv-1) seroconversion in homosexual men

TL;DR: The analysis suggested that AIDS is unlikely in the first year; 78% of seropositive homosexual men remain AIDS-free 60 months after seroconversion; and the AIDS incidence increases for months 12-36 and levels off at 38 per 1,000 person-semesters for months 42-60, which is longer than previous estimates based on parametric models.
Journal ArticleDOI

Nonparametric estimation of lifetime and disease onset distributions from incomplete observations.

Gregg E. Dinse, +1 more
- 01 Dec 1982 - 
TL;DR: The proposed methods generalize and shed additional light on the constrained estimators presented by Kodell, Shaw and Johnson (1982, Biometrics 38, 43-58).