scispace - formally typeset
Journal ArticleDOI

Use of recycled fibers in concrete composites: A systematic comprehensive review

TLDR
In this article, a comprehensive review was carried out on the influence of recycled plastic fibers (RPFs), recycled carpet fibers (RCFs) and recycled steel fibers (RSFs) on the fresh, mechanical and ductility properties of concrete.
Abstract
Municipal solid waste materials are growing worldwide due to human consumption. Nowadays, a different type of goods on large-scale is produced in the factories which is going to generate numerous amount of solid waste materials in the near future. Therefore, the management of these solid waste materials is a great concern around the world. Inadequate landfill, environmental pollution and its financial burden on relevant authorities, recycling and utilization of waste materials have a significant impact compared to disposing them. Studies have been done to reuse of waste materials as one of the elements of concrete composites. Each of the elements gives the concrete strength; however, the reuse of these wastes not only makes the concrete economical and sustainable, but also helps in decreasing environmental pollution. There are a number of different types of waste materials such as plastics, carpets, steels, tires, glass, and several types of ashes. In this paper, a comprehensive review was carried out on the influence of recycled plastic fibers (RPFs), recycled carpet fibers (RCFs) and recycled steel fibers (RSFs) on the fresh, mechanical and ductility properties of concrete. The previous studies were investigated to highlight the effects of these waste product fibers on the most important concrete properties such as slump, compressive strength, splitting tensile strength, flexural strength, modulus of elasticity, ultrasonic pulse velocity, energy absorption, ductility, and toughness. In this regard, more than 200 published papers were collected, and then the methods of preparation and properties of these recycled fibers (RF) were reviewed and analyzed. Moreover, empirical models using mechanical properties were also developed. As a result, RPFs, RCFs and RSFs could be used safely in concrete composites due to it is satisfactory fresh, physical and mechanical properties.

read more

Citations
More filters
Journal ArticleDOI

Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations

TL;DR: In this article , a detailed review on the effect of nano-silica (nS) on the compressive strength (CS) of geopolymer concrete composites was provided, and a large amount of mixed design data were extracted from literature studies to create five different models including artificial neural network, M5P-tree, linear regression, nonlinear regression, and multi logistic regression models for forecasting the CS of GPC incorporated nS.
Journal ArticleDOI

The role of nanomaterials in geopolymer concrete composites: A state-of-the-art review

TL;DR: In this article , the effects of different nanoparticles on the most essential fresh, mechanical, durability, and microstructure characteristics of geopolymer paste, mortar, and concrete composites were reviewed, analyzed, and discussed in detail.
Journal ArticleDOI

Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances

TL;DR: A comprehensive review on the fresh, mechanical, and structural performances of GPC is presented in this article , where the authors have explored the behaviour of geopolymer concrete (GPC) as an alternative to Portland cement concrete (PCC) in micro and macro dimensions.
Journal ArticleDOI

Fire resistance of geopolymer concrete: A critical review

TL;DR: In this paper , a critical literature review of current updates related to the fire performance of RF-reinforced GPC subjected to elevated temperatures and during fires is urgently necessary, conducting critical reviews on the type of RFs, spalling mechanism, physical inspection and properties of the RF-RGPCs.
Journal ArticleDOI

Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire

TL;DR: In this paper , an experimental study was carried out to explore the effect of fiber content on the fresh and hardened state of the concrete, and compression, splitting tensile, and flexure tests were performed to observe the performance of concrete with tire-recycled steel fibers with the ratios of 1, 2% and 3%.
References
More filters
Journal ArticleDOI

Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended

TL;DR: In this article, the workability and rheological characteristics of self-compacting high strength concrete (SCHSC) made with recycled polypropylene plastic particles (RPPP) with fly ash (FA) and silica fume (SF) are investigated.
Journal ArticleDOI

Development of innovative hybrid sandwich panel slabs: Experimental results

TL;DR: In this article, a new generation of composite sandwich slab is proposed as a solution for the rehabilitation of slabs in old masonry buildings, which consists of four components: a Deflection Hardening Cement Composite (DHCC) layer on the top compression skin, a glass fiber reinforced polymer (GFRP) skin at the bottom tension surface, GFRP ribs to transfer shear from top to bottom layers, and foam core for thermal-insolation purposes.
Journal ArticleDOI

Mechanical performance of concrete made of steel fibers from tire waste

TL;DR: In this article, the structural performance of reinforced concrete beams cast with fiber reinforced concrete (RFRC) and manufactured steel fibres (SFRC) was compared to those of concrete made from tire waste.
Journal ArticleDOI

Strength, modulus of elasticity and shrinkage behaviour of concrete containing waste carpet fiber

TL;DR: In this article, the authors present test results on some physical and mechanical properties of concrete containing fiber from recycled carpet waste, including compressive, tensile and flexural strengths, modulus of elasticity and shrinkage.
Journal ArticleDOI

Mechanical properties and ductility behavior of ultra-high performance fiber reinforced concretes: Effect of low water-to-binder ratios and micro glass fibers

TL;DR: In this article, the authors investigated the mechanical performance and ductility behavior of UHPFRC with high volume of micro-glass fibers (MGF) and found that lower water-to-binder ratios resulted in better mechanical performance.
Related Papers (5)