scispace - formally typeset
Search or ask a question

Showing papers on "Dynamic mode decomposition published in 2010"


Journal ArticleDOI
TL;DR: In this article, a method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment.
Abstract: The description of coherent features of fluid flow is essential to our understanding of fluid-dynamical and transport processes. A method is introduced that is able to extract dynamic information from flow fields that are either generated by a (direct) numerical simulation or visualized/measured in a physical experiment. The extracted dynamic modes, which can be interpreted as a generalization of global stability modes, can be used to describe the underlying physical mechanisms captured in the data sequence or to project large-scale problems onto a dynamical system of significantly fewer degrees of freedom. The concentration on subdomains of the flow field where relevant dynamics is expected allows the dissection of a complex flow into regions of localized instability phenomena and further illustrates the flexibility of the method, as does the description of the dynamics within a spatial framework. Demonstrations of the method are presented consisting of a plane channel flow, flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet passing between two cylinders.

4,150 citations


Book ChapterDOI
01 Jan 2010
TL;DR: In this article, the Koopman operator is used to analyze nonlinear flows based on spectral analysis of a linear operator defined for any nonlinear dynamical system, such as a jet in crossflow, which decouple the dynamics at different timescales more effectively than POD and capture the relevant frequencies more accurately than linear stability analysis.
Abstract: This paper addresses recent developments in model-reduction techniques applicable to fluid flows. The main goal is to obtain low-order models tractable enough to be used for analysis and design of feedback laws for flow control, while retaining the essential physics. We first give a brief overview of several model reduction techniques, including Proper Orthogonal Decomposition [3], balanced truncation [8, 9], and the related Eigensystem Realization Algorithm [5, 6], and discuss strengths and weaknesses of each approach. We then describe a new method for analyzing nonlinear flows based on spectral analysis of the Koopman operator, a linear operator defined for any nonlinear dynamical system. We show that, for an example of a jet in crossflow, the resulting Koopman modes decouple the dynamics at different timescales more effectively than POD modes, and capture the relevant frequencies more accurately than linear stability analysis.

31 citations