scispace - formally typeset
Search or ask a question

Showing papers on "Galangin published in 1978"


Journal ArticleDOI
TL;DR: Structural features which appear essential for mutagenic activity in this strain are a basic flavanoid ring structure with a free hydroxyl group at the 3 position, a double bond at the 2, 3 and 4 position, and a structure which permits the proton of the 3-hydroxyl Group to tautomerise to a 3-keto compound.
Abstract: 40 compounds structurally related to the plant flavonol quercetin were tested for mutagenic activity in Salmonella typhimurium strain TA98. 10 flavonols, quercetin, myricetin, rhamnetin, galangin, kaempferol, tamarixetin, morin, 3'-O-methylquercetin, 7,4'-di-O-methylquercetin and 5,7-di-O-methyl-quercetin, exhibited unequivocal mutagenic activity. 4 compounds, quercetin, myricetin, rhamnetin and 5,7-di-O-methylquercetin, were active without metabolic activation, although metabolic activation markedly enhanced their activity. All 4 have free hydroxyl groups at the 3' and 4' positions of the B ring. The other active compounds required an in vitro rat-liver metabolizing system for significant activity. Structural features which appear essential for mutagenic activity in this strain are a basic flavanoid ring structure with (1) a free hydroxyl group at the 3 position, (2) a double bond at the 2, 3 position, (3) a keto group at the 4 position, and (4) a structure which permits the proton of the 3-hydroxyl group to tautomerise to a 3-keto compound. The data are consistent with the requirement for a B ring structure that permits oxidation to quininoid intermediates. Free hydroxyl groups in the B ring are not essential for activity if a rat-liver metabolic activating system is employed. Data from 12 compounds which differ only at the essential sites described above indicate that the structural requirements for mutagenicity in strain TA100 are the same as those for activity in strain TA98. Based on the above structural requirements, a metabolic pathway for flavonol activation to DNA-reactive species is proposed.

292 citations