scispace - formally typeset
Search or ask a question

Showing papers on "Small hairpin RNA published in 1992"


Journal ArticleDOI
TL;DR: The antiviral effect of the ribozyme appears to be specific and results from directed RNA cleavage; activity requires both a target sequence and a functional RNA catalytic center.
Abstract: Ribozymes are RNAs that possess the dual properties of RNA sequence-specific recognition, analogous to conventional antisense molecules, and RNA substrate destruction via site-specific cleavage. The cleavage reaction is catalytic in that more than one substrate molecule is processed per ribozyme molecule. We have designed a hairpin ribozyme that cleaves human immunodeficiency virus type 1 (HIV-1) RNA in the leader sequence (at nucleotides +111/112 relative to the transcription initiation site). The ribozyme was tested in vitro and gave efficient and specific cleavage of RNA containing the leader sequence. To test the antiviral efficacy of this ribozyme, we have cotransfected into HeLa cells HIV-1 proviral DNA and a plasmid expressing the ribozyme from the human beta-actin promoter. HIV-1 expression was inhibited as measured by p24 antigen levels and reduced Tat activity. The antiviral effect of the ribozyme appears to be specific and results from directed RNA cleavage; activity requires both a target sequence and a functional RNA catalytic center. These results suggest that this HIV-1-directed hairpin ribozyme may be useful as a therapeutic agent.

289 citations


Journal ArticleDOI
14 Aug 1992-Science
TL;DR: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop and this general binding motif may be used to disrupt the structure of regulatory RNA hairpins.
Abstract: A pseudo--half-knot can be formed by binding an oligonucleotide asymmetrically to an RNA hairpin loop. This binding motif was used to target the human immunodeficiency virus TAR element, an important viral RNA structure that is the receptor for Tat, the major viral transactivator protein. Oligonucleotides complementary to different halves of the TAR structure bound with greater affinity than molecules designed to bind symmetrically around the hairpin. The pseudo--half-knot--forming oligonucleotides altered the TAR structure so that specific recognition and binding of a Tat-derived peptide was disrupted. This general binding motif may be used to disrupt the structure of regulatory RNA hairpins.

92 citations


Journal ArticleDOI
TL;DR: It is suggested that HMGB1 is critical for the survival of prostate cancer cells and targeted knockdown ofHMGB1 mRNA can be used as a strategy to kill prostate cancer Cells.
Abstract: High mobility group box protein 1 (HMGB1), transcriptional activity regulatory protein is associated with most cancers including prostate cancer. To investigate the effects of down-regulation of HMGB1 expression, we have transfected LNCaP cells with four short hairpin RNA (shRNA) targeting HMGB1 plasmid vectors. Transfection with the four shRNAs efficiently and specifically reduced the HMGB1 expression in LNCaP cells. The gene silencing effects on HMGB1 expression were subsequently confirmed by RT-PCR and immunoblotting analyses. Down-regulation of HMGB1 expression resulted in the inhibition of cell growth in LNCaP prostate cancer cells and the decreased cell number was due to transfected cells undergoing apoptosis via caspase-3-dependent pathways. These findings suggest that HMGB1 is critical for the survival of prostate cancer cells and targeted knockdown of HMGB1 mRNA can be used as a strategy to kill prostate cancer cells. Our findings may have some potential therapeutic relevance for treating prostate cancer.

71 citations