scispace - formally typeset
Search or ask a question

Showing papers on "Transcription Factor CHOP published in 1993"


Journal ArticleDOI
17 Jun 1993-Nature
TL;DR: The presence of an abnormal CHOP transcript and protein in these tumours is reported and Targeting of a conserved effector domain of RNA-binding proteins to DNA may play a role in tumour formation.
Abstract: Human myxoid liposarcomas contain a characteristic chromosomal translocation, t(12;16)(q13;p11), that is associated with a structural rearrangement of the gene encoding CHOP, a growth arrest and DNA-damage inducible member of the C/EBP family of transcription factors residing on 12q13.1. Using a CHOP-specific complementary probe and antiserum we report here the presence of an abnormal CHOP transcript and protein in these tumours. Cloning of the translocation-associated CHOP gene product revealed a fusion between CHOP and a gene provisionally named TLS (translocated in liposarcoma). TLS is a novel nuclear RNA-binding protein with extensive sequence similarity to EWS, the product of a gene commonly translocated in Ewing's sarcoma. In TLS-CHOP the RNA-binding domain of TLS is replaced by the DNA-binding and leucine zipper dimerization domain of CHOP. Targeting of a conserved effector domain of RNA-binding proteins to DNA may play a role in tumour formation.

866 citations


Journal ArticleDOI
TL;DR: It is shown that the translocation t(12;16)(q13:p11) in malignant myxoid liposarcoma can be a fusion of the CHOP dominant negative transcription factor gene with a novel gene, FUS, which can result in fusion of.
Abstract: The search for tumour–specific markers is one of the chief goals in cancer biology. We show that the translocation t(12;16)(q13:p11) in malignant myxoid liposarcoma can be a fusion of the CHOP dominant negative transcription factor gene with a novel gene, FUS, which can result in fusion of the FUS glycine–rich protein with the whole CHOP coding region. The data support the concept that protein fusion may commonly occur in solid tumours resulting in tumour–specific markers of potential clinical importance. The data also indicate the importance of transcription disruption in the pathogenesis of solid tumours.

542 citations