scispace - formally typeset
Search or ask a question

Showing papers by "Alejandra Gonzalez-Beltran published in 2014"


Journal ArticleDOI
TL;DR: A new metagenomics resource is developed that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored in the European Nucleotide Archive.
Abstract: Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive.

129 citations


Journal ArticleDOI
TL;DR: This work introduces the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata.
Abstract: Reporting and sharing experimental metadata- such as the experimental design, characteristics of the samples, and procedures applied, along with the analysis results, in a standardised manner ensures that datasets are comprehensible and, in principle, reproducible, comparable and reusable. Furthermore, sharing datasets in formats designed for consumption by humans and machines will also maximize their use. The Investigation/Study/Assay (ISA) open source metadata tracking framework facilitates standards-compliant collection, curation, visualization, storage and sharing of datasets, leveraging on other platforms to enable analysis and publication. The ISA software suite includes several components used in increasingly diverse set of life science and biomedical domains; it is underpinned by a general-purpose format, ISA-Tab, and conversions exist into formats required by public repositories. While ISA-Tab works well mainly as a human readable format, we have also implemented a linked data approach to semantically define the ISA-Tab syntax. We present a semantic web representation of the ISA-Tab syntax that complements ISA-Tab's syntactic interoperability with semantic interoperability. We introduce the linkedISA conversion tool from ISA-Tab to the Resource Description Framework (RDF), supporting mappings from the ISA syntax to multiple community-defined, open ontologies and capitalising on user-provided ontology annotations in the experimental metadata. We describe insights of the implementation and how annotations can be expanded driven by the metadata. We applied the conversion tool as part of Bio-GraphIIn, a web-based application supporting integration of the semantically-rich experimental descriptions. Designed in a user-friendly manner, the Bio-GraphIIn interface hides most of the complexities to the users, exposing a familiar tabular view of the experimental description to allow seamless interaction with the RDF representation, and visualising descriptors to drive the query over the semantic representation of the experimental design. In addition, we defined queries over the linkedISA RDF representation and demonstrated its use over the linkedISA conversion of datasets from Nature' Scientific Data online publication. Our linked data approach has allowed us to: 1) make the ISA-Tab semantics explicit and machine-processable, 2) exploit the existing ontology-based annotations in the ISA-Tab experimental descriptions, 3) augment the ISA-Tab syntax with new descriptive elements, 4) visualise and query elements related to the experimental design. Reasoning over ISA-Tab metadata and associated data will facilitate data integration and knowledge discovery.

65 citations


Journal ArticleDOI
TL;DR: The Risa package is presented, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment.
Abstract: The ISA-Tab format and software suite have been developed to break the silo effect induced by technology-specific formats for a variety of data types and to better support experimental metadata tracking. Experimentalists seldom use a single technique to monitor biological signals. Providing a multi-purpose, pragmatic and accessible format that abstracts away common constructs for describing I nvestigations, S tudies and A ssays, ISA is increasingly popular. To attract further interest towards the format and extend support to ensure reproducible research and reusable data, we present the Risa package, which delivers a central component to support the ISA format by enabling effortless integration with R, the popular, open source data crunching environment. The Risa package bridges the gap between the metadata collection and curation in an ISA-compliant way and the data analysis using the widely used statistical computing environment R. The package offers functionality for: i) parsing ISA-Tab datasets into R objects, ii) augmenting annotation with extra metadata not explicitly stated in the ISA syntax; iii) interfacing with domain specific R packages iv) suggesting potentially useful R packages available in Bioconductor for subsequent processing of the experimental data described in the ISA format; and finally v) saving back to ISA-Tab files augmented with analysis specific metadata from R. We demonstrate these features by presenting use cases for mass spectrometry data and DNA microarray data. The Risa package is open source (with LGPL license) and freely available through Bioconductor. By making Risa available, we aim to facilitate the task of processing experimental data, encouraging a uniform representation of experimental information and results while delivering tools for ensuring traceability and provenance tracking. The Risa package is available since Bioconductor 2.11 (version 1.0.0) and version 1.2.1 appeared in Bioconductor 2.12, both along with documentation and examples. The latest version of the code is at the development branch in Bioconductor and can also be accessed from GitHub https://github.com/ISA-tools/Risa , where the issue tracker allows users to report bugs or feature requests.

25 citations


Posted ContentDOI
08 Dec 2014-bioRxiv
TL;DR: The extent by which ISA, NP and RO models, together with the Galaxy workflow system, can capture the experimental processes and reproduce the findings of a previously published paper reporting on the development of SOAPdenovo2, a de novo genome assembler is assessed.
Abstract: Motivation: Reproducing the results from a scientific paper can be challenging due to the absence of data and the computational tools required for their analysis. In addition, details relating to the proce- dures used to obtain the published results can be difficult to discern due to the use of natural language when reporting how experiments have been performed. The Investigation/Study/Assay (ISA), Nanop- ublications (NP) and Research Objects (RO) models are conceptual data modelling frameworks that can structure such information from scientific papers. Computational workflow platforms can also be used to reproduce analyses of data in a principled manner. We assessed the extent by which ISA, NP and RO models, together with the Galaxy workflow system, can capture the experimental processes and reproduce the findings of a previously published paper reporting on the development of SOAPdenovo2, a de novo genome assembler. Results: Executable workflows were developed using Galaxy which reproduced results that were con- sistent with the published findings. A structured representation of the information in the SOAPdenovo2 paper was produced by combining the use of ISA, NP and RO models. By structuring the information in the published paper using these data and scientific workflow modelling frameworks, it was possible to explicitly declare elements of experimental design, variables and findings. The models served as guides in the curation of scientific information and this led to the identification of inconsistencies in the original published paper, thereby allowing its authors to publish corrections in the form of an errata. Availability: SOAPdenovo2 scripts, data and results are available through the GigaScience Database: http://dx.doi.org/10.5524/100044; the workflows are available from GigaGalaxy: http://galaxy. cbiit.cuhk.edu.hk; and the representations using the ISA, NP and RO models are available through the SOAPdenovo2 case study website http://isa-tools.github.io/soapdenovo2/. Contact: philippe.rocca- serra@oerc.ox.ac.uk and susanna.assunta-sansone@oerc.ox.ac.uk

4 citations


01 Jan 2014
TL;DR: It is demonstrated here how a tabular template can be used to collect information on microbial diversity using an explicit representation in the Resource Description Framework (RDF) that is consistent with community agreed-upon knowledge representation patterns found in the Ontology for Biomedical Investigations (OBI).
Abstract: The advent of affordable sequencing technology provides for a new generation of explorers who probe the world’s microbial diversity. Projects such as Tara Oceans, Moorea Biocode Project and Gut Microbiome rely on sequencing technologies to probe community diversity. Either targeted gene surveys (also known as community surveys) or complete metagenomes are evaluated. The former, being the less costly of the two methods, relies on the identification of specific genomic regions, which can be used as a proxy to estimate genetic distance between related species in a Phylum. For instance, 16S ribosomal RNA gene surveys are used to probe bacterial communities while Internal Transcribed Spacer (ITS) surveys, for example, can be used for probing fungal communities. With the explosion of projects and frenzy to explore new domains of life, scientists in the field have issued guidelines to report minimal information (following a checklist), ensuring that information is contextualized in a meaningful way. Yet the semantic of a checklist is not explicit. We demonstrate here how a tabular template can be used to collect information on microbial diversity using an explicit representation in the Resource Description Framework (RDF) that is consistent with community agreed-upon knowledge representation patterns found in the Ontology for Biomedical Investigations (OBI). Keywords— microbial diversity, targeted gene survey, ontology, assay, OBO Foundry, ISA framework ICBO 2014 Proceedings

1 citations