scispace - formally typeset
Search or ask a question

Showing papers by "Alexander Kurganov published in 2018"


Journal ArticleDOI
TL;DR: A new paradigm based on a purely conservative reformulation of the Euler equations using global fluxes is advocated, capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable.

78 citations


Journal ArticleDOI
TL;DR: This paper focuses on central-upwind schemes, which belong to the family of Godunov-type Riemann-problem-solver-free central schemes, but incorporate some upwinding information about the local speeds of propagation, which helps to reduce an excessive amount of numerical diffusion typically present in classical (staggered) non-oscillatory central schemes.
Abstract: Shallow-water equations are widely used to model water flow in rivers, lakes, reservoirs, coastal areas, and other situations in which the water depth is much smaller than the horizontal length scale of motion. The classical shallow-water equations, the Saint-Venant system, were originally proposed about 150 years ago and still are used in a variety of applications. For many practical purposes, it is extremely important to have an accurate, efficient and robust numerical solver for the Saint-Venant system and related models. As their solutions are typically non-smooth and even discontinuous, finite-volume schemes are among the most popular tools. In this paper, we review such schemes and focus on one of the simplest (yet highly accurate and robust) methods: central-upwind schemes. These schemes belong to the family of Godunov-type Riemann-problem-solver-free central schemes, but incorporate some upwinding information about the local speeds of propagation, which helps to reduce an excessive amount of numerical diffusion typically present in classical (staggered) non-oscillatory central schemes. Besides the classical one- and two-dimensional Saint-Venant systems, we will consider the shallow-water equations with friction terms, models with moving bottom topography, the two-layer shallow-water system as well as general non-conservative hyperbolic systems.

71 citations


Journal ArticleDOI
TL;DR: This paper implements a newly developed second-order reconstruction in the context of well-balanced central-upwind and finite-volume evolution Galerkin schemes and demonstrates that the resulting finite- volume methods preserve exactly the so-called jets in the rotational frame.
Abstract: In the present paper we study shallow water equations with bottom topography and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme. In order to construct a higher order approximation a crucial step is a well-balanced reconstruction which has to be combined with a well-balanced update in time. We implement our newly developed second-order reconstruction in the context of well-balanced central-upwind and finite-volume evolution Galerkin schemes. Theoretical proofs and numerical experiments clearly demonstrate that the resulting finite-volume methods preserve exactly the so-called jets in the rotational frame. For general two-dimensional geostrophic equilibria the well-balanced methods, while not preserving the equilibria exactly, yield better resolution than their non-well-balanced counterparts.

43 citations


Journal ArticleDOI
TL;DR: Novel high-order hybrid finite-volume-finite-difference schemes for the Patlak-Keller-Segel chemotaxis system and related models are developed and studied and demonstrated high-accuracy, stability and computational efficiency of the proposed schemes are demonstrated.
Abstract: Chemotaxis refers to mechanisms by which cellular motion occurs in response to an external stimulus, usually a chemical one. Chemotaxis phenomenon plays an important role in bacteria/cell aggregation and pattern formation mechanisms, as well as in tumor growth. A common property of all chemotaxis systems is their ability to model a concentration phenomenon that mathematically results in rapid growth of solutions in small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit a very singular, spiky behavior. There is consequently a need for accurate and computationally efficient numerical methods for the chemotaxis models. In this work, we develop and study novel high-order hybrid finite-volume-finite-difference schemes for the Patlak-Keller-Segel chemotaxis system and related models. We demonstrate high-accuracy, stability and computational efficiency of the proposed schemes in a number of numerical examples.

40 citations


Journal ArticleDOI
TL;DR: An improved well-balanced positivity preserving central-upwind scheme for the two-dimensional Saint-Venant system of shallow water equations is constructed based on a continuous piecewise linear discretization of the bottom topography over an unstructured triangular grid.

29 citations


Journal ArticleDOI
TL;DR: In this paper, a finite-difference shock-capturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary is presented.
Abstract: In this paper, we describe how to construct a finite-difference shock-capturing method for the numerical solution of the Euler equation of gas dynamics on arbitrary two-dimensional domain Ω, possibly with moving boundary. The boundaries of the domain are assumed to be changing due to the movement of solid objects/obstacles/walls. Although the motion of the boundary could be coupled with the fluid, all of the numerical tests are performed assuming that such a motion is prescribed and independent of the fluid flow. The method is based on discretizing the equation on a regular Cartesian grid in a rectangular domain ΩR ⊃ Ω. We identify inner and ghost points. The inner points are the grid points located inside Ω, while the ghost points are the grid points that are outside Ω but have at least one neighbor inside Ω. The evolution equations for inner points data are obtained from the discretization of the governing equation, while the data at the ghost points are obtained by a suitable extrapolation of the primitive variables (density, velocities and pressure). Particular care is devoted to a proper description of the boundary conditions for both fixed and time dependent domains. Several numerical experiments are conducted to illustrate the validity of the method. We demonstrate that the second order of accuracy is numerically assessed on genuinely two-dimensional problems.

15 citations


Posted Content
TL;DR: In this paper, a stochastic Galerkin method was proposed to model the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions.
Abstract: We develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results demonstrate the reliability and robustness of the stochastic Galerkin method. We also use the proposed method to study the behavior of clouds in certain perturbed scenarios, for examples, the ones leading to changes in macroscopic cloud pattern as a shift from hexagonal to rectangular structures.

3 citations