Institution

# Tulane University

Education•New Orleans, Louisiana, United States•

About: Tulane University is a(n) education organization based out in New Orleans, Louisiana, United States. It is known for research contribution in the topic(s): Population & Poison control. The organization has 24478 authors who have published 47205 publication(s) receiving 1944993 citation(s). The organization is also known as: University of Louisiana.

Topics: Population, Poison control, Blood pressure, Receptor, Angiotensin II

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.

Abstract: Generalized gradient approximations (GGA’s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. [S0031-9007(96)01479-2] PACS numbers: 71.15.Mb, 71.45.Gm Kohn-Sham density functional theory [1,2] is widely used for self-consistent-field electronic structure calculations of the ground-state properties of atoms, molecules, and solids. In this theory, only the exchange-correlation energy EXC › EX 1 EC as a functional of the electron spin densities n"srd and n#srd must be approximated. The most popular functionals have a form appropriate for slowly varying densities: the local spin density (LSD) approximation Z d 3 rn e unif

117,932 citations

••

[...]

TL;DR: A simple analytic representation of the correlation energy for a uniform electron gas, as a function of density parameter and relative spin polarization \ensuremath{\zeta}, which confirms the practical accuracy of the VWN and PZ representations and eliminates some minor problems.

Abstract: We propose a simple analytic representation of the correlation energy ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$ for a uniform electron gas, as a function of density parameter ${\mathit{r}}_{\mathit{s}}$ and relative spin polarization \ensuremath{\zeta}. Within the random-phase approximation (RPA), this representation allows for the ${\mathit{r}}_{\mathit{s}}^{\mathrm{\ensuremath{-}}3/4}$ behavior as ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}\ensuremath{\infty}. Close agreement with numerical RPA values for ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$,0), ${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$,1), and the spin stiffness ${\mathrm{\ensuremath{\alpha}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$)=${\mathrm{\ensuremath{\partial}}}^{2}$${\mathrm{\ensuremath{\varepsilon}}}_{\mathit{c}}$(${\mathit{r}}_{\mathit{s}}$, \ensuremath{\zeta}=0)/\ensuremath{\delta}${\mathrm{\ensuremath{\zeta}}}^{2}$, and recovery of the correct ${\mathit{r}}_{\mathit{s}}$ln${\mathit{r}}_{\mathit{s}}$ term for ${\mathit{r}}_{\mathit{s}}$\ensuremath{\rightarrow}0, indicate the appropriateness of the chosen analytic form. Beyond RPA, different parameters for the same analytic form are found by fitting to the Green's-function Monte Carlo data of Ceperley and Alder [Phys. Rev. Lett. 45, 566 (1980)], taking into account data uncertainties that have been ignored in earlier fits by Vosko, Wilk, and Nusair (VWN) [Can. J. Phys. 58, 1200 (1980)] or by Perdew and Zunger (PZ) [Phys. Rev. B 23, 5048 (1981)]. While we confirm the practical accuracy of the VWN and PZ representations, we eliminate some minor problems with these forms. We study the \ensuremath{\zeta}-dependent coefficients in the high- and low-density expansions, and the ${\mathit{r}}_{\mathit{s}}$-dependent spin susceptibility. We also present a conjecture for the exact low-density limit. The correlation potential ${\mathrm{\ensuremath{\mu}}}_{\mathit{c}}^{\mathrm{\ensuremath{\sigma}}}$(${\mathit{r}}_{\mathit{s}}$,\ensuremath{\zeta}) is evaluated for use in self-consistent density-functional calculations.

19,831 citations

••

[...]

TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.

Abstract: Generalized gradient approximations (GGA's) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a GGA based on real-space cutoff of the spurious long-range components of the second-order gradient expansion for the exchange-correlation hole. We have found that this density functional performs well in numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ionization energies and electron affinities are improved in a statistical sense, although significant interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancellation of error between density functionals for exchange and correlation, which is most striking whenever the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the lattice constants of Li and Na by 3--4 % is corrected, and the magnetic ground state of solid Fe is restored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature energy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the positive long-range contribution, we find surface and curvature energies in good agreement with experimental or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects.

16,870 citations

••

[...]

TL;DR: Numerical results for atoms, positive ions, and surfaces are close to the exact correlation energies, with major improvements over the original LM approximation for the ions and surfaces.

Abstract: Langreth and Mehl (LM) and co-workers have developed a useful spin-density functional for the correlation energy of an electronic system. Here the LM functional is improved in two ways: (1) The natural separation between exchange and correlation is made, so that the density-gradient expansion of each is recovered in the slowly varying limit. (2) Uniform-gas and inhomogeneity effects beyond the randomphase approximation are built in. Numerical results for atoms, positive ions, and surfaces are close to the exact correlation energies, with major improvements over the original LM approximation for the ions and surfaces.

15,448 citations

••

[...]

TL;DR: In this paper, the self-interaction correction (SIC) of any density functional for the ground-state energy is discussed. But the exact density functional is strictly selfinteraction-free (i.e., orbitals demonstrably do not selfinteract), but many approximations to it, including the local spin-density (LSD) approximation for exchange and correlation, are not.

Abstract: The exact density functional for the ground-state energy is strictly self-interaction-free (i.e., orbitals demonstrably do not self-interact), but many approximations to it, including the local-spin-density (LSD) approximation for exchange and correlation, are not. We present two related methods for the self-interaction correction (SIC) of any density functional for the energy; correction of the self-consistent one-electron potenial follows naturally from the variational principle. Both methods are sanctioned by the Hohenberg-Kohn theorem. Although the first method introduces an orbital-dependent single-particle potential, the second involves a local potential as in the Kohn-Sham scheme. We apply the first method to LSD and show that it properly conserves the number content of the exchange-correlation hole, while substantially improving the description of its shape. We apply this method to a number of physical problems, where the uncorrected LSD approach produces systematic errors. We find systematic improvements, qualitative as well as quantitative, from this simple correction. Benefits of SIC in atomic calculations include (i) improved values for the total energy and for the separate exchange and correlation pieces of it, (ii) accurate binding energies of negative ions, which are wrongly unstable in LSD, (iii) more accurate electron densities, (iv) orbital eigenvalues that closely approximate physical removal energies, including relaxation, and (v) correct longrange behavior of the potential and density. It appears that SIC can also remedy the LSD underestimate of the band gaps in insulators (as shown by numerical calculations for the rare-gas solids and CuCl), and the LSD overestimate of the cohesive energies of transition metals. The LSD spin splitting in atomic Ni and $s\ensuremath{-}d$ interconfigurational energies of transition elements are almost unchanged by SIC. We also discuss the admissibility of fractional occupation numbers, and present a parametrization of the electron-gas correlation energy at any density, based on the recent results of Ceperley and Alder.

14,881 citations

##### Authors

Showing all 24478 results

Name | H-index | Papers | Citations |
---|---|---|---|

Walter C. Willett | 334 | 2399 | 413322 |

JoAnn E. Manson | 270 | 1819 | 258509 |

Frank B. Hu | 250 | 1675 | 253464 |

Eric B. Rimm | 196 | 988 | 147119 |

Krzysztof Matyjaszewski | 169 | 1431 | 128585 |

Nicholas J. White | 161 | 1352 | 104539 |

Tien Yin Wong | 160 | 1880 | 131830 |

Tomas Hökfelt | 158 | 1033 | 95979 |

Thomas E. Starzl | 150 | 1625 | 91704 |

Geoffrey Burnstock | 141 | 1488 | 99525 |

Joseph Sodroski | 138 | 542 | 77070 |

Glenn M. Chertow | 128 | 764 | 82401 |

Darwin J. Prockop | 128 | 576 | 87066 |

Kenneth J. Pienta | 127 | 671 | 64531 |

Charles Taylor | 126 | 741 | 77626 |