scispace - formally typeset
Search or ask a question

Showing papers by "Andrea Zonca published in 2022"


Journal ArticleDOI
The Astropy Collaboration, Adrian M. Price-Whelan, Pey Lian Lim, Nicholas Earl, Nathaniel Starkman, Larry Bradley, David L. Shupe, Aarya A. Patil, Lia Corrales, C. E. Brasseur, M. Nöthe, Axel Donath, Erik Tollerud, Brett M. Morris, Adam Ginsburg, Eero Vaher, B. A. Weaver, James Tocknell, William Jamieson, M. H. van Kerkwijk, Thomas P. Robitaille, Bruce Merry, Matteo Bachetti, H. M. Gunther, Tom Aldcroft, Jaime A. Alvarado-Montes, Anne M. Archibald, A. B'odi, Shreyas Bapat, Geert Barentsen, Juanjo Baz'an, Manish J Biswas, Médéric Boquien, D. J. Burke, D Di Cara, Mihai Cara, Kyle E. Conroy, Simon Conseil, Matt Craig, Robert M. Cross, Kelle L. Cruz, Francesco D'Eugenio, Nadia Dencheva, Hadrien A. R. Devillepoix, J. P. Dietrich, Arthur Eigenbrot, Thomas Erben, Leonardo Ferreira, Daniel Foreman-Mackey, R. T. Fox, Nabil Freij, Suyog Garg, Robel Geda, Lauren Glattly, Yash Gondhalekar, Karl D. Gordon, David Grant, Perry Greenfield, A. M. Groener, S. Guest, Sebastián Gurovich, Rasmus Handberg, Akeem Hart, Zac Hatfield-Dodds, Derek Homeier, Griffin Hosseinzadeh, Tim Jenness, Craig Jones, Prajwel Joseph, J. Bryce Kalmbach, Emir Karamehmetoglu, M. Kaluszy'nski, Michaelann Kelley, Nicholas S. Kern, Wolfgang Kerzendorf, Eric W. Koch, Shankar Kulumani, Antony H. Lee, Chun Ly, Zhiyuan Mao, Conor D. MacBride, Jakob M. Maljaars, Demitri Muna, Nellie Appy Murphy, Henrik Norman, R. G. O'Steen, Kyle A. Oman, Camilla Pacifici, Sergio Pascual, J. Pascual-Granado, Rohit R Patil, G. I. Perren, T. E. Pickering, Tanuja Rastogi, Benjamin R. Roulston, Daniel F Ryan, Eli S. Rykoff, J. Sabater, Parikshit Sakurikar, Jesús Busto Salgado, Aniket Sanghi, Nicholas Saunders, V. G. Savchenko, L. C. Schwardt, Michael Seifert-Eckert, Albert J. Shih, A. S. Jain, G. R. Shukla, J. Sick, Chris Simpson, Sudheesh Singanamalla, Leo Singer, Jaladh Singhal, Manodeep Sinha, B. SipHocz, Lee R. Spitler, David Stansby, Ole Streicher, Jani vSumak, John D. Swinbank, Dan S. Taranu, N. B. Tewary, Grant R. Tremblay, Miguel De Val-Borro, Samuel J. Van Kooten, Zlatan Vasovi'c, Shresth Verma, José Vinícius de Miranda Cardoso, Peter K. G. Williams, Tom J. Wilson, Benjamin Winkel, W. M. Wood-Vasey, Rui Xue, Peter Yoachim, Chenchen Zhang, Andrea Zonca 
TL;DR: Astropy as mentioned in this paper is a Python package that provides commonly needed functionality to the astronomical community, such as astronomy, astronomy, and astronomy data visualization, as well as other related projects and packages.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project.

299 citations


ReportDOI
15 Mar 2022
TL;DR: Abazajian et al. as discussed by the authors proposed a CMB-S4 Collaboration, which consists of the following participants: 1) Arwa Abdulghafour, 1.
Abstract: The CMB-S4 Collaboration: Kevork Abazajian,1 Arwa Abdulghafour,2 Graeme E. Addison,3 Peter Adshead,4 Zeeshan Ahmed,5 Marco Ajello,6 Daniel Akerib,5 Steven W. Allen,7,5 David Alonso,8 Marcelo Alvarez,9,10 Mustafa A. Amin,11 Mandana Amiri,12 Adam Anderson,13 Behzad Ansarinejad,2 Melanie Archipley,4 Kam S. Arnold,14 Matt Ashby,15 Han Aung,16 Carlo Baccigalupi,17,18 Carina Baker,4 Abhishek Bakshi,13 Debbie Bard,10 Denis Barkats,15,19 Darcy Barron,20 Peter S. Barry,21,22 James G. Bartlett,23 Paul Barton,10 Ritoban Basu Thakur,24 Nicholas Battaglia,25 Jim Beall,26 Rachel Bean,25 Dominic Beck,7 Sebastian Belkner,27 Karim Benabed,28 Amy N. Bender,21,29 Bradford A. Benson,13,30 Bobby Besuner,10 Matthieu Bethermin,31 Sanah Bhimani,16 Federico Bianchini,7,5 Simon Biquard,23,32 Ian Birdwell,20 Colin A. Bischoff,33 Lindsey Bleem,21,29 Paulina Bocaz,34 James J. Bock,24,35 Sebastian Bocquet,36 Kimberly K. Boddy,37 J. Richard Bond,38 Julian Borrill,10,9 François R. Bouchet,28 Thejs Brinckmann,39,40 Michael L. Brown,41 Sean Bryan,42 Victor Buza,30,29 Karen Byrum,21 Erminia Calabrese,22 Victoria Calafut,38 Robert Caldwell,43 John E. Carlstrom,30,21 Julien Carron,27 Thomas Cecil,21 Anthony Challinor,44 Victor Chan,45 Clarence L. Chang,21,30 Scott Chapman,12 Eric Charles,5 Eric Chauvin,46 Cheng Cheng,47 Grace Chesmore,30 Kolen Cheung,9,10 Yuji Chinone,48 Jens Chluba,41 Hsiao-Mei Sherry Cho,5 Steve Choi,25 Justin Clancy,2 Susan Clark,7,49 Asantha Cooray,1 Gabriele Coppi,50 John Corlett,10 Will Coulton,51 Thomas M. Crawford,30,29 Abigail Crites,25,24 Ari Cukierman,5,7 Francis-Yan Cyr-Racine,20 Wei-Ming Dai,47 Cail Daley,4 Eli Dart,10 Gregorg Daues,4 Tijmen de Haan,52 Cosmin Deaconu,30,29 Jacques Delabrouille,32 Greg Derylo,13 Mark Devlin,53 Eleonora Di Valentino,54 Marion Dierickx,19 Brad Dober,26 Randy Doriese,26 Shannon Duff,26 Daniel Dutcher,55 Cora Dvorkin,19 Rolando Dünner,56 Tarraneh Eftekhari,57 Joseph Eimer,3 Hamza El Bouhargani,10 Tucker Elleflot,10 Nick Emerson,58 Josquin Errard,23 Thomas Essinger-Hileman,59 Giulio Fabbian,22,51 Valentina Fanfani,50 Alessandro Fasano,31 Chang Feng,4 Simone Ferraro,10 Jeffrey P. Filippini,4 Raphael Flauger,14 Brenna Flaugher,13 Aurelien A. Fraisse,55 Josef Frisch,5 Andrei Frolov,60 Nicholas Galitzki,14 Patricio A. Gallardo,30 Silvia Galli,28 Ken Ganga,23 Martina Gerbino,40 Christos Giannakopoulos,33 Murdock Gilchriese,10 Vera Gluscevic,61 Neil GoecknerWald,7 David Goldfinger,19 Daniel Green,14 Paul Grimes,15 Daniel Grin,62 Evan Grohs,63 Riccardo Gualtieri,21 Vic Guarino,21 Jon E. Gudmundsson,64 Ian Gullett,65 Sam Guns,9 Salman Habib,21 Gunther Haller,5 Mark Halpern,12 Nils W. Halverson,66 Shaul Hanany,67 Emma Hand,33 Kathleen Harrington,30 Masaya Hasegawa,52 Matthew Hasselfield,51 Masashi Hazumi,52 Katrin Heitmann,21 Shawn Henderson,5 Brandon Hensley,55 Ryan Herbst,5 Carlos Hervias-Caimapo,68 J. Colin Hill,69,51 Richard Hills,70 Eric Hivon,28,71 Renée Hložek,45,72 Anna Ho,73,9 Gil Holder,4 Matt Hollister,13 William Holzapfel,9 John

15 citations


Journal ArticleDOI
TL;DR: In this article , the authors apply three corrections to the nominal LFI bandpass profiles including removal of a known systematic effect in the ground measuring equipment at 61 GHz; smoothing of standing wave ripples; and edge regularization.
Abstract: We discuss the treatment of bandpass and beam leakage corrections in the Bayesian BeyondPlanck CMB analysis pipeline as applied to the Planck LFI measurements. As a preparatory step, we first apply three corrections to the nominal LFI bandpass profiles including removal of a known systematic effect in the ground measuring equipment at 61 GHz; smoothing of standing wave ripples; and edge regularization. The main net impact of these modifications is an overall shift in the 70 GHz bandpass of +0.6 GHz; we argue that any analysis of LFI data products, either from Planck or BeyondPlanck, should use these new bandpasses. In addition, we fit a single free bandpass parameter for each radiometer of the form $\Delta_i = \Delta_0 + \delta_i$, where $\Delta_0$ represents an absolute frequency shift per frequency band and $\delta_i$ is a relative shift per detector. The absolute correction is only fitted at 30 GHz with a full $\chi^2$-based likelihood, resulting in a correction of $\Delta_{30}=0.24\pm0.03\,$GHz. The relative corrections are fitted using a spurious map approach, fundamentally similar to the method pioneered by the WMAP team, but without introducing many additional degrees of freedom. All bandpass parameters are sampled using a standard Metropolis sampler within the main BeyondPlanck Gibbs chain, and bandpass uncertainties are thus propagated to all other data products in the analysis. In total, we find that our bandpass model significantly reduces leakage effects. For beam leakage corrections, we adopt the official Planck LFI beam estimates without additional degrees of freedom, and only marginalize over the underlying sky model. We note that this is the first time leakage from beam mismatch has been included for Planck LFI maps.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the authors discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers.
Abstract: Feedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64 $$-$$ 0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiN $$_x$$ /Nb microstrip at 100 mK and over the frequency range 200–350 GHz, which is comparable to values previously reported in the literature.

2 citations


Journal ArticleDOI
TL;DR: In this article , the authors estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations, and calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.
Abstract: LiteBIRD is a future satellite mission designed to observe the polarization of the cosmic microwave background radiation in order to probe the inflationary universe. LiteBIRD is set to observe the sky using three telescopes with transition-edge sensor bolometers. In this work we estimated the LiteBIRD instrumental sensitivity using its current design. We estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations. The noise terms associated with thermal carrier and readout noise were modeled in the detector noise calculation. We calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.

Proceedings ArticleDOI
16 Aug 2022
TL;DR: Liger as discussed by the authors is a second generation near-infrared imager and integral field spectrograph (IFS) for the W. M. Keck Observatory that will utilize the capabilities of the Keck All-sky Precision Adaptive-optics (KAPA) system.
Abstract: Liger is a second generation near-infrared imager and integral field spectrograph (IFS) for the W. M. Keck Observatory that will utilize the capabilities of the Keck All-sky Precision Adaptive-optics (KAPA) system. Liger operates at a wavelength range of 0.81 μm - 2.45 μm and utilizes a slicer and a lenslet array IFS with varying spatial plate scales and fields of view resulting in hundreds of modes available to the astronomer. Because of the high level of complexity in the raw data formats for the slicer and lenslet IFS modes, Liger must be designed in conjunction with a Data Reduction System (DRS) which will reduce data from the instrument in real-time and deliver science-ready data products to the observer. The DRS will reduce raw imager and IFS frames from the readout system and provide 2D and 3D data products via custom quick-look visualization tools suited to the presentation of IFS data. The DRS will provide the reduced data to the Keck Observatory Archive (KOA) and will be available to astronomers for offline post-processing of observer data. We present an initial design for the DRS and define the interfaces between observatory and instrument software systems.