scispace - formally typeset
Search or ask a question

Showing papers in "The astrophysical journal in 2022"


Journal ArticleDOI
TL;DR: The first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole, were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of 1.3 mm as mentioned in this paper .
Abstract: We present the first Event Horizon Telescope (EHT) observations of Sagittarius A* (Sgr A*), the Galactic center source associated with a supermassive black hole. These observations were conducted in 2017 using a global interferometric array of eight telescopes operating at a wavelength of λ = 1.3 mm. The EHT data resolve a compact emission region with intrahour variability. A variety of imaging and modeling analyses all support an image that is dominated by a bright, thick ring with a diameter of 51.8 ± 2.3 μas (68% credible interval). The ring has modest azimuthal brightness asymmetry and a comparatively dim interior. Using a large suite of numerical simulations, we demonstrate that the EHT images of Sgr A* are consistent with the expected appearance of a Kerr black hole with mass ∼4 × 106 M ⊙, which is inferred to exist at this location based on previous infrared observations of individual stellar orbits, as well as maser proper-motion studies. Our model comparisons disfavor scenarios where the black hole is viewed at high inclination (i > 50°), as well as nonspinning black holes and those with retrograde accretion disks. Our results provide direct evidence for the presence of a supermassive black hole at the center of the Milky Way, and for the first time we connect the predictions from dynamical measurements of stellar orbits on scales of 103–105 gravitational radii to event-horizon-scale images and variability. Furthermore, a comparison with the EHT results for the supermassive black hole M87* shows consistency with the predictions of general relativity spanning over three orders of magnitude in central mass.

500 citations


Journal ArticleDOI
The Astropy Collaboration, Adrian M. Price-Whelan, Pey Lian Lim, Nicholas Earl, Nathaniel Starkman, Larry Bradley, David L. Shupe, Aarya A. Patil, Lia Corrales, C. E. Brasseur, M. Nöthe, Axel Donath, Erik Tollerud, Brett M. Morris, Adam Ginsburg, Eero Vaher, B. A. Weaver, James Tocknell, William Jamieson, M. H. van Kerkwijk, Thomas P. Robitaille, Bruce Merry, Matteo Bachetti, H. M. Gunther, Tom Aldcroft, Jaime A. Alvarado-Montes, Anne M. Archibald, A. B'odi, Shreyas Bapat, Geert Barentsen, Juanjo Baz'an, Manish J Biswas, Médéric Boquien, D. J. Burke, D Di Cara, Mihai Cara, Kyle E. Conroy, Simon Conseil, Matt Craig, Robert M. Cross, Kelle L. Cruz, Francesco D'Eugenio, Nadia Dencheva, Hadrien A. R. Devillepoix, J. P. Dietrich, Arthur Eigenbrot, Thomas Erben, Leonardo Ferreira, Daniel Foreman-Mackey, R. T. Fox, Nabil Freij, Suyog Garg, Robel Geda, Lauren Glattly, Yash Gondhalekar, Karl D. Gordon, David Grant, Perry Greenfield, A. M. Groener, S. Guest, Sebastián Gurovich, Rasmus Handberg, Akeem Hart, Zac Hatfield-Dodds, Derek Homeier, Griffin Hosseinzadeh, Tim Jenness, Craig Jones, Prajwel Joseph, J. Bryce Kalmbach, Emir Karamehmetoglu, M. Kaluszy'nski, Michaelann Kelley, Nicholas S. Kern, Wolfgang Kerzendorf, Eric W. Koch, Shankar Kulumani, Antony H. Lee, Chun Ly, Zhiyuan Mao, Conor D. MacBride, Jakob M. Maljaars, Demitri Muna, Nellie Appy Murphy, Henrik Norman, R. G. O'Steen, Kyle A. Oman, Camilla Pacifici, Sergio Pascual, J. Pascual-Granado, Rohit R Patil, G. I. Perren, T. E. Pickering, Tanuja Rastogi, Benjamin R. Roulston, Daniel F Ryan, Eli S. Rykoff, J. Sabater, Parikshit Sakurikar, Jesús Busto Salgado, Aniket Sanghi, Nicholas Saunders, V. G. Savchenko, L. C. Schwardt, Michael Seifert-Eckert, Albert J. Shih, A. S. Jain, G. R. Shukla, J. Sick, Chris Simpson, Sudheesh Singanamalla, Leo Singer, Jaladh Singhal, Manodeep Sinha, B. SipHocz, Lee R. Spitler, David Stansby, Ole Streicher, Jani vSumak, John D. Swinbank, Dan S. Taranu, N. B. Tewary, Grant R. Tremblay, Miguel De Val-Borro, Samuel J. Van Kooten, Zlatan Vasovi'c, Shresth Verma, José Vinícius de Miranda Cardoso, Peter K. G. Williams, Tom J. Wilson, Benjamin Winkel, W. M. Wood-Vasey, Rui Xue, Peter Yoachim, Chenchen Zhang, Andrea Zonca 
TL;DR: Astropy as mentioned in this paper is a Python package that provides commonly needed functionality to the astronomical community, such as astronomy, astronomy, and astronomy data visualization, as well as other related projects and packages.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project.

299 citations


Journal ArticleDOI
TL;DR: In this paper , Cepheids were measured with the same WFC3 instrument and filters (F555W, F814W and F160W) to negate zeropoint errors.
Abstract: We report observations from HST of Cepheids in the hosts of 42 SNe Ia used to calibrate the Hubble constant (H0). These include all suitable SNe Ia in the last 40 years at z<0.01, measured with >1000 orbits, more than doubling the sample whose size limits the precision of H0. The Cepheids are calibrated geometrically from Gaia EDR3 parallaxes, masers in N4258 (here tripling that Cepheid sample), and DEBs in the LMC. The Cepheids were measured with the same WFC3 instrument and filters (F555W, F814W, F160W) to negate zeropoint errors. We present multiple verifications of Cepheid photometry and tests of background determinations that show measurements are accurate in the presence of crowding. The SNe calibrate the mag-z relation from the new Pantheon+ compilation, accounting here for covariance between all SN data, with host properties and SN surveys matched to negate differences. We decrease the uncertainty in H0 to 1 km/s/Mpc with systematics. We present a comprehensive set of ~70 analysis variants to explore the sensitivity of H0 to selections of anchors, SN surveys, z range, variations in the analysis of dust, metallicity, form of the P-L relation, SN color, flows, sample bifurcations, and simultaneous measurement of H(z). Our baseline result from the Cepheid-SN sample is H0=73.04+-1.04 km/s/Mpc, which includes systematics and lies near the median of all analysis variants. We demonstrate consistency with measures from HST of the TRGB between SN hosts and NGC 4258 with Cepheids and together these yield 72.53+-0.99. Including high-z SN Ia we find H0=73.30+-1.04 with q0=-0.51+-0.024. We find a 5-sigma difference with H0 predicted by Planck+LCDM, with no indication this arises from measurement errors or analysis variations considered to date. The source of this now long-standing discrepancy between direct and cosmological routes to determining the Hubble constant remains unknown.

275 citations


Journal ArticleDOI
TL;DR: In this article , the authors calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations.
Abstract: Astrophysical black holes are expected to be described by the Kerr metric. This is the only stationary, vacuum, axisymmetric metric, without electromagnetic charge, that satisfies Einstein’s equations and does not have pathologies outside of the event horizon. We present new constraints on potential deviations from the Kerr prediction based on 2017 EHT observations of Sagittarius A* (Sgr A*). We calibrate the relationship between the geometrically defined black hole shadow and the observed size of the ring-like images using a library that includes both Kerr and non-Kerr simulations. We use the exquisite prior constraints on the mass-to-distance ratio for Sgr A* to show that the observed image size is within ∼10% of the Kerr predictions. We use these bounds to constrain metrics that are parametrically different from Kerr, as well as the charges of several known spacetimes. To consider alternatives to the presence of an event horizon, we explore the possibility that Sgr A* is a compact object with a surface that either absorbs and thermally reemits incident radiation or partially reflects it. Using the observed image size and the broadband spectrum of Sgr A*, we conclude that a thermal surface can be ruled out and a fully reflective one is unlikely. We compare our results to the broader landscape of gravitational tests. Together with the bounds found for stellar-mass black holes and the M87 black hole, our observations provide further support that the external spacetimes of all black holes are described by the Kerr metric, independent of their mass.

219 citations


Journal ArticleDOI
TL;DR: In this article , the authors presented the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm.
Abstract: We present the first event-horizon-scale images and spatiotemporal analysis of Sgr A* taken with the Event Horizon Telescope in 2017 April at a wavelength of 1.3 mm. Imaging of Sgr A* has been conducted through surveys over a wide range of imaging assumptions using the classical CLEAN algorithm, regularized maximum likelihood methods, and a Bayesian posterior sampling method. Different prescriptions have been used to account for scattering effects by the interstellar medium toward the Galactic center. Mitigation of the rapid intraday variability that characterizes Sgr A* has been carried out through the addition of a “variability noise budget” in the observed visibilities, facilitating the reconstruction of static full-track images. Our static reconstructions of Sgr A* can be clustered into four representative morphologies that correspond to ring images with three different azimuthal brightness distributions and a small cluster that contains diverse nonring morphologies. Based on our extensive analysis of the effects of sparse (u, v)-coverage, source variability, and interstellar scattering, as well as studies of simulated visibility data, we conclude that the Event Horizon Telescope Sgr A* data show compelling evidence for an image that is dominated by a bright ring of emission with a ring diameter of ∼50 μas, consistent with the expected “shadow” of a 4 × 106 M ⊙ black hole in the Galactic center located at a distance of 8 kpc.

149 citations


Journal ArticleDOI
TL;DR: In this article , the authors present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26.
Abstract: We present constraints on cosmological parameters from the Pantheon+ analysis of 1701 light curves of 1550 distinct Type Ia supernovae (SNe Ia) ranging in redshift from z = 0.001 to 2.26. This work features an increased sample size from the addition of multiple cross-calibrated photometric systems of SNe covering an increased redshift span, and improved treatments of systematic uncertainties in comparison to the original Pantheon analysis, which together result in a factor of 2 improvement in cosmological constraining power. For a flat ΛCDM model, we find Ω M = 0.334 ± 0.018 from SNe Ia alone. For a flat w 0CDM model, we measure w 0 = −0.90 ± 0.14 from SNe Ia alone, H 0 = 73.5 ± 1.1 km s−1 Mpc−1 when including the Cepheid host distances and covariance (SH0ES), and w 0 = −0.978−0.031+0.024 when combining the SN likelihood with Planck constraints from the cosmic microwave background (CMB) and baryon acoustic oscillations (BAO); both w 0 values are consistent with a cosmological constant. We also present the most precise measurements to date on the evolution of dark energy in a flat w 0 w a CDM universe, and measure w a = −0.1−2.0+0.9 from Pantheon+ SNe Ia alone, H 0 = 73.3 ± 1.1 km s−1 Mpc−1 when including SH0ES Cepheid distances, and w a = −0.65−0.32+0.28 when combining Pantheon+ SNe Ia with CMB and BAO data. Finally, we find that systematic uncertainties in the use of SNe Ia along the distance ladder comprise less than one-third of the total uncertainty in the measurement of H 0 and cannot explain the present “Hubble tension” between local measurements and early universe predictions from the cosmological model.

144 citations


Journal ArticleDOI
TL;DR: In this paper , the authors present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5-11 campaign.
Abstract: We present Event Horizon Telescope (EHT) 1.3 mm measurements of the radio source located at the position of the supermassive black hole Sagittarius A* (Sgr A*), collected during the 2017 April 5–11 campaign. The observations were carried out with eight facilities at six locations across the globe. Novel calibration methods are employed to account for Sgr A*'s flux variability. The majority of the 1.3 mm emission arises from horizon scales, where intrinsic structural source variability is detected on timescales of minutes to hours. The effects of interstellar scattering on the image and its variability are found to be subdominant to intrinsic source structure. The calibrated visibility amplitudes, particularly the locations of the visibility minima, are broadly consistent with a blurred ring with a diameter of ∼50 μas, as determined in later works in this series. Contemporaneous multiwavelength monitoring of Sgr A* was performed at 22, 43, and 86 GHz and at near-infrared and X-ray wavelengths. Several X-ray flares from Sgr A* are detected by Chandra, one at low significance jointly with Swift on 2017 April 7 and the other at higher significance jointly with NuSTAR on 2017 April 11. The brighter April 11 flare is not observed simultaneously by the EHT but is followed by a significant increase in millimeter flux variability immediately after the X-ray outburst, indicating a likely connection in the emission physics near the event horizon. We compare Sgr A*’s broadband flux during the EHT campaign to its historical spectral energy distribution and find that both the quiescent emission and flare emission are consistent with its long-term behavior.

137 citations


Journal ArticleDOI
TL;DR: In this article , the authors compare resolved EHT data at 230 GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions.
Abstract: In this paper we provide a first physical interpretation for the Event Horizon Telescopeʼs (EHT) 2017 observations of Sgr A. Our main approach is to compare resolved EHT data at 230GHz and unresolved non-EHT observations from radio to X-ray wavelengths to predictions from a library of models based on time-dependent general relativistic magnetohydrodynamics simulations, including aligned, tilted, and stellar-wind-fed simulations; radiative transfer is performed assuming both thermal and nonthermal electron distribution functions. We test the models against 11 constraints drawn from EHT 230 GHz data and observations at 86 GHz, 2.2 μm, and in the X-ray. All models fail at least one constraint. Light-curve variability provides a particularly severe constraint, failing nearly all strongly magnetized (magnetically arrested disk (MAD)) models and a large fraction of weakly magnetized models. A number of models fail only the variability constraints. We identify a promising cluster of these models, which are MAD and have inclination i„ 30°. They have accretion rate (5.2–9.5)× 10 Me yr, bolometric luminosity (6.8–9.2)× 10 erg s, and outflow power (1.3–4.8)× 10 erg s. We also find that all models with i… 70° fail at least two constraints, as do all models with equal ion and electron temperature; exploratory, nonthermal model sets tend to have higher 2.2 μm flux density; and the population of cold electrons is limited by X-ray constraints due to the risk of bremsstrahlung overproduction. Finally, we discuss physical and numerical limitations of the models, highlighting the possible importance of kinetic effects and duration of the simulations. Unified Astronomy Thesaurus concepts: Black hole physics (159); Galactic center (565)

119 citations


Journal ArticleDOI
TL;DR: In this paper , Keck-telescope spectrophotometry and imaging of the companion of the pulsar PSR J0952−0607, the fastest known spinning neutron star (NS) in the disk of the Milky Way, is described.
Abstract: We describe Keck-telescope spectrophotometry and imaging of the companion of the “black widow” pulsar PSR J0952−0607, the fastest known spinning neutron star (NS) in the disk of the Milky Way. The companion is very faint at minimum brightness, presenting observational challenges, but we have measured multicolor light curves and obtained radial velocities over the illuminated “day” half of the orbit. The model fits indicate system inclination i = 59.°8 ± 1.°9 and a pulsar mass M NS = 2.35 ± 0.17 M ⊙, the largest well-measured mass found to date. Modeling uncertainties are small, since the heating is not extreme; the companion lies well within its Roche lobe and a simple direct-heating model provides the best fit. If the NS started at a typical pulsar birth mass, nearly 1 M ⊙ has been accreted; this may be connected with the especially low intrinsic dipole surface field, estimated at 6 × 107 G. Joined with reanalysis of other black widow and redback pulsars, we find that the minimum value for the maximum NS mass is Mmax>2.19M⊙ (2.09 M ⊙) at 1σ (3σ) confidence. This is ∼ 0.15 M ⊙ heavier than the lower limit on Mmax implied by the white dwarf–pulsar binaries measured via radio Shapiro-delay techniques.

100 citations


Journal ArticleDOI
TL;DR: The first few 100 Myr at z > 10 mark the last major uncharted epoch in the history of the universe, where only a single galaxy (GN-z11 at z ≈ 11) is currently spectroscopically confirmed as discussed by the authors .
Abstract: The first few 100 Myr at z > 10 mark the last major uncharted epoch in the history of the universe, where only a single galaxy (GN-z11 at z ≈ 11) is currently spectroscopically confirmed. Here we present a search for luminous z > 10 galaxies with JWST/NIRCam photometry spanning ≈1–5 μm and covering 49 arcmin2 from the public JWST Early Release Science programs (CEERS and GLASS). Our most secure candidates are two M UV ≈ −21 systems: GLASS-z12 and GLASS-z10. These galaxies display abrupt ≳1.8 mag breaks in their spectral energy distributions (SEDs), consistent with complete absorption of flux bluewards of Lyα that is redshifted to z=12.4−0.3+0.1 and z=10.4−0.5+0.4 . Lower redshift interlopers such as quiescent galaxies with strong Balmer breaks would be comfortably detected at >5σ in multiple bands where instead we find no flux. From SED modeling we infer that these galaxies have already built up ∼109 solar masses in stars over the ≲300–400 Myr after the Big Bang. The brightness of these sources enable morphological constraints. Tantalizingly, GLASS-z10 shows a clearly extended exponential light profile, potentially consistent with a disk galaxy of r 50 ≈ 0.7 kpc. These sources, if confirmed, join GN-z11 in defying number density forecasts for luminous galaxies based on Schechter UV luminosity functions, which require a survey area >10× larger than we have studied here to find such luminous sources at such high redshifts. They extend evidence from lower redshifts for little or no evolution in the bright end of the UV luminosity function into the cosmic dawn epoch, with implications for just how early these galaxies began forming. This, in turn, suggests that future deep JWST observations may identify relatively bright galaxies to much earlier epochs than might have been anticipated.

94 citations


Journal ArticleDOI
TL;DR: In this paper , the authors quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A, as observed by the EHT in 2017 April at a wavelength of 1.3 mm.
Abstract: In this paper we quantify the temporal variability and image morphology of the horizon-scale emission from Sgr A, as observed by the EHT in 2017 April at a wavelength of 1.3 mm. We find that the Sgr A data exhibit variability that exceeds what can be explained by the uncertainties in the data or by the effects of interstellar scattering. The magnitude of this variability can be a substantial fraction of the correlated flux density, reaching ∼100% on some baselines. Through an exploration of simple geometric source models, we demonstrate that ringlike morphologies provide better fits to the Sgr A data than do other morphologies with comparable complexity. We develop two strategies for fitting static geometric ring models to the time-variable Sgr A data; one strategy fits models to short segments of data over which the source is static and averages these independent fits, while the other fits models to the full data set using a parametric model for the structural variability power spectrum around the average source structure. Both geometric modeling and image-domain feature extraction techniques determine the ring diameter to be 51.8± 2.3 μas (68% credible intervals), with the ring thickness constrained to have an FWHM between ∼30% and 50% of the ring diameter. To bring the diameter measurements to a common physical scale, we calibrate them using synthetic data generated from GRMHD simulations. This calibration constrains the angular size of the gravitational radius to be + 4.8 0.7 1.4 μas, which we combine with an independent distance measurement from maser parallaxes to determine the mass of Sgr A to be ́ + 4.0 10 0.6 1.1 6 Me. Unified Astronomy Thesaurus concepts: Black holes (162)

Journal ArticleDOI
TL;DR: In this article , the results of a first search for galaxy candidates at z ∼ 9-15 on deep seven-band NIRCam imaging acquired as part of the GLASS-James Webb Space Telescope (JWST) Early Release Science Program on a flanking field of the Frontier Fields cluster A2744.
Abstract: We present the results of a first search for galaxy candidates at z ∼ 9–15 on deep seven-band NIRCam imaging acquired as part of the GLASS-James Webb Space Telescope (JWST) Early Release Science Program on a flanking field of the Frontier Fields cluster A2744. Candidates are selected via two different renditions of the Lyman-break technique, isolating objects at z ∼ 9–11, and z ∼ 9–15, respectively, supplemented by photometric redshifts obtained with two independent codes. We find five color-selected candidates at z > 9, plus one additional candidate with photometric redshift z phot ≥ 9. In particular, we identify two bright candidates at M UV ≃ −21 that are unambiguously placed at z ≃ 10.6 and z ≃ 12.2, respectively. The total number of galaxies discovered at z > 9 is in line with the predictions of a nonevolving luminosity function. The two bright ones at z > 10 are unexpected given the survey volume, although cosmic variance and small number statistics limits general conclusions. This first search demonstrates the unique power of JWST to discover galaxies at the high-redshift frontier. The candidates are ideal targets for spectroscopic follow-up in Cycle-2.

Journal ArticleDOI
Steven L. Finkelstein, Micaela Bagley, P. Arrabal Haro, Mark Dickinson, Henry C. Ferguson, Jeyhan S. Kartaltepe, Casey Papovich, Denis Burgarella, Dale D. Kocevski, Marc Huertas-Company, Kartheik Iyer, Rebecca L. Larson, P. P'erez-Gonz'alez, Caitlin Rose, Sandro Tacchella, Stephen M. Wilkins, Aubrey Medrano, Alexa M. Morales, Rachel S. Somerville, L. Y. Aaron Yung, Adriano Fontana, Mauro Giavalisco, Andrea Grazian, Norman A. Grogin, Lisa J. Kewley, Anton M. Koekemoer, Allison Kirkpatrick, P. Kurczynski, Jennifer M. Lotz, Laura Pentericci, Nor Pirzkal, Swara Ravindranath, Russell E. Ryan, Jonathan R. Trump, Omar Almaini, Ricardo Amorín, M. Annunziatella, Bren E. Backhaus, Guillermo Barro, Peter Behroozi, Eric F. Bell, Rachana Bhatawdekar, L. Bisigello, Volker Bromm, V. Buat, Fernando Buitrago, A. Calabrò, Caitlin M. Casey, Marco Castellano, 'Oscar A. Ch'avez Ortiz, Laure Ciesla, Nikko J. Cleri, Seth H. Cohen, J. Cole, Kevin C. Cooke, Michael C. Cooper, Asantha Cooray, L. Costantin, Isabella G. Cox, Darren J. Croton, Emanuele Daddi, Romeel Davé, Alexander de la Vega, Avishai Dekel, David Elbaz, Vicente Estrada-Carpenter, Sandra M. Faber, V. Fern'andez, Keely D. Finkelstein, Jonathan Freundlich, Seiji Fujimoto, A. García-Argumánez, Jonathan P. Gardner, Eric Gawiser, C. Gómez-Guijarro, Yuchen Guo, Timothy S. Hamilton, Nimish P. Hathi, Benne W. Holwerda, Michaela Hirschmann, T. Hutchison, Saurabh Jha, Shardha Jogee, Stéphanie Juneau, Intae Jung, Susan A. Kassin, Aur'elien Le Bail, Gene C. K. Leung, Ray A. Lucas, Benjamin Magnelli, Kameswara Bharadwaj Mantha, Jasleen Matharu, Elizabeth J. McGrath, Daniel H. McIntosh, Emiliano Merlin, Bahram Mobasher, Jeffrey A. Newman, David C. Nicholls, Viraj Pandya, Marc Rafelski, Kaila Ronayne, Paola Santini, L.-M. Seill'e, Ekta A. Shah, Lu Shen, Raymond C. Simons, Gregory F. Snyder, Elizabeth R. Stanway, Amber Straughn, Harry I. Teplitz, Brittany N. Vanderhoof, Jesús Vega-Ferrero, Weichen Wang, Benjamin J. Weiner, Christopher N. A. Willmer, Stijn Wuyts, Jorge A. Zavala 
TL;DR: The first epoch of the James Webb Space Telescope (JWST) Cosmic Evolution Early Release Science Survey (CEESS) was used to identify a source with a robust z phot = 11.8−0.3 (1σ uncertainty) with m F200W = 27.3 and ≳7σ detections in five filters as mentioned in this paper .
Abstract: We report the discovery of a candidate galaxy with a photo-z of z ∼ 12 in the first epoch of the James Webb Space Telescope (JWST) Cosmic Evolution Early Release Science Survey. Following conservative selection criteria, we identify a source with a robust z phot = 11.8−0.2+0.3 (1σ uncertainty) with m F200W = 27.3 and ≳7σ detections in five filters. The source is not detected at λ < 1.4 μm in deep imaging from both Hubble Space Telescope (HST) and JWST and has faint ∼3σ detections in JWST F150W and HST F160W, which signal a Lyα break near the red edge of both filters, implying z ∼ 12. This object (Maisie’s Galaxy) exhibits F115W − F200W > 1.9 mag (2σ lower limit) with a blue continuum slope, resulting in 99.6% of the photo-z probability distribution function favoring z > 11. All data-quality images show no artifacts at the candidate’s position, and independent analyses consistently find a strong preference for z > 11. Its colors are inconsistent with Galactic stars, and it is resolved (r h = 340 ± 14 pc). Maisie’s Galaxy has log M */M ⊙ ∼ 8.5 and is highly star-forming (log sSFR ∼ −8.2 yr−1), with a blue rest-UV color (β ∼ −2.5) indicating little dust, though not extremely low metallicity. While the presence of this source is in tension with most predictions, it agrees with empirical extrapolations assuming UV luminosity functions that smoothly decline with increasing redshift. Should follow-up spectroscopy validate this redshift, our universe was already aglow with galaxies less than 400 Myr after the Big Bang.

Journal ArticleDOI
TL;DR: The GLASS JWST Early Release Science (hereafter GLASS-JWST-ERS) Program will obtain and make publicly available the deepest extragalactic data of the ERS campaign, which is primarily designed to address two key science questions, namely, what sources ionized the universe and when? and how do baryons cycle through galaxies as mentioned in this paper .
Abstract: The GLASS-JWST Early Release Science (hereafter GLASS-JWST-ERS) Program will obtain and make publicly available the deepest extragalactic data of the ERS campaign. It is primarily designed to address two key science questions, namely, “what sources ionized the universe and when?” and “how do baryons cycle through galaxies?”, while also enabling a broad variety of first look scientific investigations. In primary mode, it will obtain NIRISS and NIRSpec spectroscopy of galaxies lensed by the foreground Hubble Frontier Field cluster, Abell 2744. In parallel, it will use NIRCam to observe two fields that are offset from the cluster center, where lensing magnification is negligible, and which can thus be effectively considered blank fields. In order to prepare the community for access to this unprecedented data, we describe the scientific rationale, the survey design (including target selection and observational setups), and present pre-commissioning estimates of the expected sensitivity. In addition, we describe the planned public releases of high-level data products, for use by the wider astronomical community.

Journal ArticleDOI
TL;DR: Early Release Observations (EROs) as mentioned in this paper are a set of public outreach products created to mark the end of commissioning and the beginning of science operations for the James Webb Space Telescope (JWST).
Abstract: The James Webb Space Telescope (JWST) Early Release Observations (EROs) is a set of public outreach products created to mark the end of commissioning and the beginning of science operations for JWST. Colloquially known as the “Webb First Images and Spectra,” these products were intended to demonstrate to the worldwide public that JWST is ready for science, and is capable of producing spectacular results. The package was released on 2022 July 12 and included images and spectra of the galaxy cluster SMACS J0723.3-7327 and distant lensed galaxies, the interacting galaxy group Stephan’s Quintet, NGC 3324 in the Carina star-forming complex, the Southern Ring planetary nebula NGC 3132, and the transiting hot Jupiter WASP-96b. This paper describes the ERO technical design, observations, and scientific processing of data underlying the colorful outreach products.

Journal ArticleDOI
TL;DR: In this paper , an equatorial plasmoid-unstable current sheet formed in a transient, non-axisymmetric, low-density magnetosphere within the inner few Schwarzschild radii.
Abstract: Magnetic reconnection can power bright, rapid flares originating from the inner magnetosphere of accreting black holes. We conduct extremely high resolution ($5376\times2304\times2304$ cells) general-relativistic magnetohydrodynamics simulations, capturing plasmoid-mediated reconnection in a 3D magnetically arrested disk for the first time. We show that an equatorial, plasmoid-unstable current sheet forms in a transient, non-axisymmetric, low-density magnetosphere within the inner few Schwarzschild radii. Magnetic flux bundles escape from the event horizon through reconnection at the universal plasmoid-mediated rate in this current sheet. The reconnection feeds on the highly-magnetized plasma in the jets and heats the plasma that ends up trapped in flux bundles to temperatures proportional to the jet's magnetization. The escaped flux bundles can complete a full orbit as low-density hot spots, consistent with Sgr A$^{*}$ observations by the GRAVITY interferometer. Reconnection near the horizon produces sufficiently energetic plasma to explain flares from accreting black holes, such as the TeV emission observed from M87. The drop in mass accretion rate during the flare, and the resulting low-density magnetosphere make it easier for very high energy photons produced by reconnection-accelerated particles to escape. The extreme resolution results in a converged plasmoid-mediated reconnection rate that directly determines the timescales and properties of the flare.

Journal ArticleDOI
TL;DR: In this article , a power-spectrum-based semi-analytic projection tool is proposed to forecast the tensor-to-scalar ratio in the presence of Galactic foregrounds and gravitational lensing of the CMB.
Abstract: CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, $r$, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for $r > 0.003$ at greater than $5\sigma$, or, in the absence of a detection, of reaching an upper limit of $r < 0.001$ at $95\%$ CL.

Journal ArticleDOI
TL;DR: In this paper , the authors constructed more than 107 equations of state (EOSs) with continuous sound speed and built more than 108 nonrotating stellar models consistent with nuclear theory and perturbative QCD, but also with astronomical observations.
Abstract: Determining the sound speed c s in compact stars is an important open question with numerous implications on the behavior of matter at large densities and hence on gravitational-wave emission from neutron stars. To this scope, we construct more than 107 equations of state (EOSs) with continuous sound speed and build more than 108 nonrotating stellar models consistent not only with nuclear theory and perturbative QCD, but also with astronomical observations. In this way, we find that EOSs with subconformal sound speeds, i.e., with cs2<1/3 within the stars, are possible in principle but very unlikely in practice, being only 0.03% of our sample. Hence, it is natural to expect that cs2>1/3 somewhere in the stellar interior. Using our large sample, we obtain estimates at 95% credibility of neutron-star radii for representative stars with 1.4 and 2.0 solar masses, R1.4=12.42−0.99+0.52km , R2.0=12.12−1.23+1.11km , and for the binary tidal deformability of the GW170817 event, Λ˜1.186=485−211+225 . Interestingly, our lower bounds on the radii are in very good agreement with the prediction derived from very different arguments, namely, the threshold mass. Finally, we provide simple analytic expressions to determine the minimum and maximum values of Λ˜ as a function of the chirp mass.

Journal ArticleDOI
TL;DR: The Reionization Era Bright Emission Line Survey (REBELS) is a cycle-7 ALMA Large Program (LP) that is identifying and performing a first characterization of many of the most luminous star-forming galaxies known in the z>6.5 universe as mentioned in this paper .
Abstract: The Reionization Era Bright Emission Line Survey (REBELS) is a cycle-7 ALMA Large Program (LP) that is identifying and performing a first characterization of many of the most luminous star-forming galaxies known in the z>6.5 universe. REBELS is providing this probe by systematically scanning 40 of the brightest UV-selected galaxies identified over a 7-deg**2 area for bright 158-micron [CII] and 88-micron [OIII] lines and dust-continuum emission. Selection of the 40 REBELS targets was done by combining our own and other photometric selections, each of which is subject to extensive vetting using three completely independent sets of photometry and template-fitting codes. Building on the observational strategy deployed in two pilot programs, we are increasing the number of massive interstellar medium (ISM) reservoirs known at z>6.5 by ~4-5x to >30. In this manuscript, we motivate the observational strategy deployed in the REBELS program and present initial results. Based on the 60.6 hours of ALMA observations taken in the first year of the program (November 2019 to January 2020), 18 highly significant >~7sigma [CII] lines have already been discovered, the bulk of which (13/18) also show >~3.3 sigma dust-continuum emission. These newly discovered lines more than triple the number of bright ISM-cooling lines known in the z>6.5 universe, such that the number of ALMA-derived redshifts at z>6.5 already rival Lya redshift discoveries. An analysis of the completeness of our search results vs. star formation rate (SFR) suggests an ~79% efficiency in scanning for [CII] when the SFR(UV+IR) is in excess of 28 M_sol/yr. These new LP results further demonstrate ALMA's efficiency as a "redshift machine", particularly in the epoch of reionization.

Journal ArticleDOI
TL;DR: The first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH) using any technique was reported by as discussed by the authors , who used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days) high-magnification microlensing event MOA-2011-BLG-191/OGLE-11-0462 in the direction of the Galactic bulge.
Abstract: We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t E ≃ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462 (hereafter designated as MOA-11-191/OGLE-11-462), in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of 6 yr, reveals a clear relativistic astrometric deflection of the background star’s apparent position. Ground-based photometry of MOA-11-191/OGLE-11-462 shows a parallactic signature of the effect of Earth’s motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 ± 1.3 M ⊙ and a distance of 1.58 ± 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic disk stars at similar distances by an amount corresponding to a transverse space velocity of ∼45 km s−1, suggesting that the BH received a “natal kick” from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial velocity measurements of Galactic X-ray binaries and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first for an isolated stellar-mass BH using any technique.

Journal ArticleDOI
TL;DR: In this paper , the authors present 1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the Supernovae and H 0 for the Equation of State of dark energy distanceladder analysis.
Abstract: Abstract Here we present 1701 light curves of 1550 unique, spectroscopically confirmed Type Ia supernovae (SNe Ia) that will be used to infer cosmological parameters as part of the Pantheon+ SN analysis and the Supernovae and H 0 for the Equation of State of dark energy distance-ladder analysis. This effort is one part of a series of works that perform an extensive review of redshifts, peculiar velocities, photometric calibration, and intrinsic-scatter models of SNe Ia. The total number of light curves, which are compiled across 18 different surveys, is a significant increase from the first Pantheon analysis (1048 SNe), particularly at low redshift ( z ). Furthermore, unlike in the Pantheon analysis, we include light curves for SNe with z < 0.01 such that SN systematic covariance can be included in a joint measurement of the Hubble constant ( H 0 ) and the dark energy equation-of-state parameter ( w ). We use the large sample to compare properties of 151 SNe Ia observed by multiple surveys and 12 pairs/triplets of “SN siblings”—SNe found in the same host galaxy. Distance measurements, application of bias corrections, and inference of cosmological parameters are discussed in the companion paper by Brout et al., and the determination of H 0 is discussed by Riess et al. These analyses will measure w with ∼3% precision and H 0 with ∼1 km s −1 Mpc −1 precision.

Journal ArticleDOI
TL;DR: In this article , the stellar populations for a sample of 161 massive, mainly quiescent galaxies were investigated with deep Keck/DEIMOS rest-frame optical spectroscopy (HALO7D survey).
Abstract: We investigate the stellar populations for a sample of 161 massive, mainly quiescent galaxies at $\langle z_{\rm obs} \rangle=0.8$ with deep Keck/DEIMOS rest-frame optical spectroscopy (HALO7D survey). With the fully Bayesian framework Prospector, we simultaneously fit the spectroscopic and photometric data with an advanced physical model (including non-parametric star-formation histories, emission lines, variable dust attenuation law, and dust and AGN emission) together with an uncertainty and outlier model. We show that both spectroscopy and photometry are needed to break the dust-age-metallicity degeneracy. We find a large diversity of star-formation histories: although the most massive ($M_{\star}>2\times10^{11}~M_{\odot}$) galaxies formed the earliest (formation redshift of $z_{\rm f}\approx5-10$ with a short star-formation timescale of $\tau_{\rm SF}\lesssim1~\mathrm{Gyr}$), lower-mass galaxies have a wide range of formation redshifts, leading to only a weak trend of $z_{\rm f}$ with $M_{\star}$. Interestingly, several low-mass galaxies with have formation redshifts of $z_{\rm f}\approx5-8$. Star-forming galaxies evolve about the star-forming main sequence, crossing the ridgeline several times in their past. Quiescent galaxies show a wide range and continuous distribution of quenching timescales ($\tau_{\rm quench}\approx0-5~\mathrm{Gyr}$) with a median of $\langle\tau_{\rm quench}\rangle=1.0_{-0.9}^{+0.8}~\mathrm{Gyr}$ and of quenching epochs of $z_{\rm quench}\approx0.8-5.0$ ($\langle z_{\rm quench}\rangle=1.3_{-0.4}^{+0.7}$). This large diversity of quenching timescales and epochs points toward a combination of internal and external quenching mechanisms. In our sample, rejuvenation and "late bloomers" are uncommon. In summary, our analysis supports the "grow & quench" framework and is consistent with a wide and continuously-populated diversity of quenching timescales.

Journal ArticleDOI
TL;DR: The first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole was reported in this article .
Abstract: We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4 M ⊙. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M ⊙, and they are unlikely to be black holes; two of the four are likely white dwarfs or neutron stars. We compare the full sample of five candidates to theoretical expectations on the number of black holes in the Milky Way (∼108) and find reasonable agreement given the small sample size.

Journal ArticleDOI
TL;DR: In this article , the authors uncover the Milky Way mergers by detecting groupings of globular clusters, stellar streams, and satellite galaxies in action (J ) space, and additionally use the redundant information on their energy (E) to enhance the contrast between the groupings.
Abstract: The Milky Way halo was predominantly formed by the merging of numerous progenitor galaxies. However, our knowledge of this process is still incomplete, especially in regard to the total number of mergers, their global dynamical properties and their contribution to the stellar population of the Galactic halo. Here, we uncover the Milky Way mergers by detecting groupings of globular clusters, stellar streams, and satellite galaxies in action ( J ) space. While actions fully characterize the orbits, we additionally use the redundant information on their energy (E) to enhance the contrast between the groupings. For this endeavor, we use Gaia EDR3‒based measurements of 170 globular clusters, 41 streams, and 46 satellites to derive their J and E. To detect groups, we use the ENLINK software, coupled with a statistical procedure that accounts for the observed phase-space uncertainties of these objects. We detect a total of N = 6 groups, including the previously known mergers Sagittarius, Cetus, Gaia‒Sausage/Enceladus, LMS-1/Wukong, Arjuna/Sequoia/I’itoi, and one new merger that we call Pontus. All of these mergers, together, comprise 62 objects (≈25% of our sample). We discuss their members, orbital properties, and metallicity distributions. We find that the three most-metal-poor streams of our galaxy—“C-19” ([Fe/H] = −3.4 dex), “Sylgr” ([Fe/H] = −2.9 dex), and “Phoenix” ([Fe/H] = −2.7 dex)—are associated with LMS-1/Wukong, showing it to be the most-metal-poor merger. The global dynamical atlas of Milky Way mergers that we present here provides a present-day reference for galaxy formation models.

Journal ArticleDOI
TL;DR: In this paper , a major extension of cigale (named x-cigale) has been developed to account for AGN/galaxy X-ray emission and improve AGN modeling at UV-to-IR wavelengths.
Abstract: Modern and future surveys effectively provide a panchromatic view for large numbers of extragalactic objects. Consistently modeling these multiwavelength survey data is a critical but challenging task for extragalactic studies. The Code Investigating GALaxy Emission (cigale) is an efficient python code for spectral energy distribution (SED) fitting of galaxies and active galactic nuclei (AGNs). Recently, a major extension of cigale (named x-cigale) has been developed to account for AGN/galaxy X-ray emission and improve AGN modeling at UV-to-IR wavelengths. Here, we apply x-cigale to different samples, including Cosmological Evolution Survey (COSMOS) spectroscopic type 2 AGNs, Chandra Deep Field-South X-ray detected normal galaxies, Sloan Digital Sky Survey quasars, and COSMOS radio objects. From these tests, we identify several weaknesses of x-cigale and improve the code accordingly. These improvements are mainly related to AGN intrinsic X-ray anisotropy, X-ray binary emission, AGN accretion-disk SED shape, and AGN radio emission. These updates improve the fit quality and allow for new interpretation of the results, based on which we discuss physical implications. For example, we find that AGN intrinsic X-ray anisotropy is moderate, and can be modeled as LX(θ)∝1+cosθ , where θ is the viewing angle measured from the AGN axis. We merge the new code into the major branch of cigale, and publicly release this new version as cigale v2022.0 on https://cigale.lam.fr.

Journal ArticleDOI
TL;DR: In this article , a detailed stellar population analysis of 11 bright galaxies at $z=9-11$ (three spectroscopically confirmed) to constrain the chemical enrichment and growth of stellar mass of early galaxies is presented.
Abstract: We present a detailed stellar population analysis of 11 bright ($H<26.6$) galaxies at $z=9-11$ (three spectroscopically confirmed) to constrain the chemical enrichment and growth of stellar mass of early galaxies. We use the flexible Bayesian spectral energy distribution (SED) fitting code Prospector with a range of star-formation histories (SFHs), a flexible dust attenuation law and a self-consistent modeling of emission lines. This approach allows us to assess how different priors affect our results, and how well we can break degeneracies between dust attenuation, stellar ages, metallicity and emission lines using data which probe only the rest-frame ultraviolet to optical wavelengths. We measure a median observed ultraviolet spectral slope $\beta=-1.87_{-0.43}^{+0.35}$ for relatively massive star-forming galaxies ($9<\log(M_{\star}/M_{\odot})<10$), consistent with no change from $z=4$ to $z=9-10$ at these stellar masses, implying rapid enrichment. Our SED-fitting results are consistent with a star-forming main sequence with sub-linear slope ($0.7\pm0.2$) and specific star-formation rates of $3-10~\mathrm{Gyr}^{-1}$. However, the stellar ages and SFHs are less well constrained. Using different SFH priors, we cannot distinguish between median mass-weighted ages of $\sim50-150$ Myr, which corresponds to 50\% formation redshifts of $z_{50}\sim10-12$ at $z\sim9$ and is of the order of the dynamical timescales of these systems. Importantly, the models with different SFH priors are able to fit the data equally well. We conclude that the current observational data cannot tightly constrain the mass-buildup timescales of these $z=9-11$ galaxies, with our results consistent with SFHs implying both a shallow and steep increase of the cosmic SFR density with time at $z>10$.

Journal ArticleDOI
TL;DR: In this article , the authors presented two bright galaxy candidates at z ∼ 12-13 identified in our H -dropout Lyman break selection with 2.3 deg 2 near-infrared deep imaging data.
Abstract: Abstract We present two bright galaxy candidates at z ∼ 12–13 identified in our H -dropout Lyman break selection with 2.3 deg 2 near-infrared deep imaging data. These galaxy candidates, selected after careful screening of foreground interlopers, have spectral energy distributions showing a sharp discontinuity around 1.7 μ m, a flat continuum at 2–5 μ m, and nondetections at <1.2 μ m in the available photometric data sets, all of which are consistent with a z > 12 galaxy. An ALMA program targeting one of the candidates shows a tentative 4 σ [O iii ] 88 μ m line at z = 13.27, in agreement with its photometric redshift estimate. The number density of the z ∼ 12–13 candidates is comparable to that of bright z ∼ 10 galaxies and is consistent with a recently proposed double-power-law luminosity function rather than the Schechter function, indicating little evolution in the abundance of bright galaxies from z ∼ 4 to 13. Comparisons with theoretical models show that the models cannot reproduce the bright end of rest-frame ultraviolet luminosity functions at z ∼ 10–13. Combined with recent studies reporting similarly bright galaxies at z ∼ 9–11 and mature stellar populations at z ∼ 6–9, our results indicate the existence of a number of star-forming galaxies at z > 10, which will be detected with upcoming space missions such as the James Webb Space Telescope, Nancy Grace Roman Space Telescope, and GREX-PLUS.

Journal ArticleDOI
TL;DR: In this article , the authors reported the results from the search of candidate objects at z > 11 using the Early Release Observations (ERO) data, which is the first set of science-grade data from this long-awaited facility.
Abstract: ABSTRACT On July 13, 2022, NASA released to the whole world the data obtained by the James Webb Space Telescope (JWST) Early Release Observations (ERO). These are the first set of science-grade data from this long-awaited facility, marking the beginning of a new era in astronomy. In the study of the early universe, JWST will allow us to push far beyond z ≈ 11, the redshift boundary previously imposed by the 1.7 μm red cut-off of the Hubble Space Telescope (HST). In contrast, JWST’s NIRCam reaches ∼5 μm. Among the JWST ERO targets there is a nearby galaxy cluster SMACS 0723-73, which is a massive cluster and has been long recognized as a potential “cosmic telescope” in amplifying background galaxies. The ERO six-band NIRCam observations on this target have covered an additional flanking field not boosted by gravitational lensing, which also sees far beyond HST. Here we report the result from our search of candidate objects at z > 11 using these ERO data. In total, there are 87 such objects identified by using the standard “dropout” technique. These objects are all detected in multiple bands and therefore cannot be spurious. For most of them, their multi-band colors are inconsistent with known types of contaminants. If the detected dropout signature is interpreted as the expected Lyman-break, it implies that these objects are at z ≈ 11–20. The large number of such candidate objects at such high redshifts is not expected from the previously favored predictions and demands further investigations. JWST spectroscopy on such objects will be critical.

Journal ArticleDOI
TL;DR: In this paper , the authors show that current uncertainties on measured interferometric angular diameters and bolometric fluxes set a systematic uncertainty floor of ≈ 2.4% in temperature, ≈2.0% in luminosity, and ≈4.2% in radius.
Abstract: Abstract Our understanding of the properties and demographics of exoplanets critically relies on our ability to determine the fundamental properties of their host stars. The advent of Gaia and large spectroscopic surveys has now made it possible, in principle, to infer the properties of individual stars, including most exoplanet hosts, to very high precision. However, we show that, in practice, such analyses are limited by uncertainties in both the fundamental scale and our models of stellar evolution, even for stars similar to the Sun. For example, we show that current uncertainties on measured interferometric angular diameters and bolometric fluxes set a systematic uncertainty floor of ≈2.4% in temperature, ≈2.0% in luminosity, and ≈4.2% in radius. Comparisons between widely available model grids suggest uncertainties of order ≈5% in mass and ≈20% in age for main-sequence and subgiant stars. While the radius uncertainties are roughly constant over this range of stars, the model-dependent uncertainties are a complex function of luminosity, temperature, and metallicity. We provide open-source software for approximating these uncertainties for individual targets and discuss strategies for reducing these uncertainties in the future.

Journal ArticleDOI
TL;DR: In this paper , the Event Horizon Telescope (EHT) observed the Sagittarius A* (Sgr A*) in the Galactic Center on 2017 April 5-11 in the 1.3 mm wavelength band.
Abstract: The Event Horizon Telescope (EHT) observed the compact radio source, Sagittarius A* (Sgr A*), in the Galactic Center on 2017 April 5–11 in the 1.3 mm wavelength band. At the same time, interferometric array data from the Atacama Large Millimeter/submillimeter Array and the Submillimeter Array were collected, providing Sgr A* light curves simultaneous with the EHT observations. These data sets, complementing the EHT very long baseline interferometry, are characterized by a cadence and signal-to-noise ratio previously unattainable for Sgr A* at millimeter wavelengths, and they allow for the investigation of source variability on timescales as short as a minute. While most of the light curves correspond to a low variability state of Sgr A*, the April 11 observations follow an X-ray flare and exhibit strongly enhanced variability. All of the light curves are consistent with a red-noise process, with a power spectral density (PSD) slope measured to be between −2 and −3 on timescales between 1 minute and several hours. Our results indicate a steepening of the PSD slope for timescales shorter than 0.3 hr. The spectral energy distribution is flat at 220 GHz, and there are no time lags between the 213 and 229 GHz frequency bands, suggesting low optical depth for the event horizon scale source. We characterize Sgr A*’s variability, highlighting the different behavior observed just after the X-ray flare, and use Gaussian process modeling to extract a decorrelation timescale and a PSD slope. We also investigate the systematic calibration uncertainties by analyzing data from independent data reduction pipelines.