scispace - formally typeset
Search or ask a question

Showing papers by "Andreas W. Götz published in 2013"


Journal ArticleDOI
TL;DR: An implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs, providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPUs running on all conventional CPU-based clusters and supercomputers.
Abstract: We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Gotz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

2,418 citations


Journal ArticleDOI
TL;DR: This precision model replaces double precision arithmetic with fixed point integer arithmetic for the accumulation of force components as compared to a previously introduced model that uses mixed single/double precision arithmetic, which significantly boosts performance on modern GPU hardware without sacrificing numerical accuracy.

851 citations


Journal ArticleDOI
TL;DR: An explicit expression for the dispersion energy in conjunction with Kohn-Sham density functional theory and frozen-density embedding to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin is employed.
Abstract: We employed an explicit expression for the dispersion (D) energy in conjunction with Kohn-Sham (KS) density functional theory and frozen-density embedding (FDE) to calculate interaction energies between DNA base pairs and a selected set of amino acid pairs in the hydrophobic core of a small protein Rubredoxin. We use this data to assess the accuracy of an FDE-D approach for the calculation of intermolecular interactions. To better analyze the calculated interaction energies we furthermore propose a new energy decomposition scheme that is similar to the well-known KS bond formation analysis [F. M. Bickelhaupt and E. J. Baerends, Rev. Comput. Chem. 15, 1 (2000)], but differs in the electron densities used to define the bond energy. The individual subsystem electron densities of the FDE approach sum to the total electron density which makes it possible to define bond energies in terms of promotion energies and an explicit interaction energy. We show that for the systems considered only a few freeze-and-thaw cycles suffice to reach convergence in these individual bond energy components, illustrating the potential of FDE-D as an efficient method to calculate intermolecular interactions.

16 citations