scispace - formally typeset
Search or ask a question

Showing papers by "Andrew A. Lacis published in 2022"


Journal ArticleDOI
TL;DR: In this article , the authors synthesize understanding of aerosol observations and their radiative and climate effects, and propose approaches to further constrain their climate effects by using next-generation, space-borne, multi-angle polarization and active remote sensing, combined with in situ observations, to better constrain aerosol scattering, absorption and size distribution.
Abstract: Tropospheric anthropogenic aerosols contribute the second-largest forcing to climate change, but with high uncertainty owing to their spatio-temporal variability and complicated optical properties. In this Review, we synthesize understanding of aerosol observations and their radiative and climate effects. Aerosols offset about one-third of the warming effect by anthropogenic greenhouse gases. Yet, in regions and seasons where the absorbing aerosol fraction is high — such as South America and East and South Asia — substantial atmospheric warming can occur. The internal mixing and the vertical distribution of aerosols, which alters both the direct effect and aerosol–cloud interactions, might further enhance this warming. Despite extensive research in aerosol–cloud interactions, there is still at least a 50% spread in total aerosol forcing estimates. This ongoing uncertainty is linked, in part, to the poor measurement of anthropogenic and natural aerosol absorption, as well as the little-understood effects of aerosols on clouds. Next-generation, space-borne, multi-angle polarization and active remote sensing, combined with in situ observations, offer opportunities to better constrain aerosol scattering, absorption and size distribution, thus, improving models to refine estimates of aerosol forcing and climate effects. Atmospheric aerosols alter Earth’s radiation balance and serve as cloud condensation nuclei, but their climate forcing potential is poorly understood. This Review describes the occurrence of aerosols in the atmosphere, assesses the known impact on climate and proposes approaches to further constrain their climate effects.

39 citations


DOI
TL;DR: In this article , the authors presented the response to anthropogenic forcing in the GISS-E2.1 climate models for the 21st century Shared Socioeconomic Pathways emission scenarios within the Coupled Model Intercomparison Project Phase 6 (CMIP6).
Abstract: This paper presents the response to anthropogenic forcing in the GISS‐E2.1 climate models for the 21st century Shared Socioeconomic Pathways emission scenarios within the Coupled Model Intercomparison Project Phase 6 (CMIP6). The experiments were performed using an updated and improved version of the NASA Goddard Institute for Space Studies (GISS) coupled general circulation model that includes two different versions for atmospheric composition: A non‐interactive version (NINT) with prescribed composition and a tuned aerosol indirect effect and the One‐Moment Aerosol model (OMA) version with fully interactive aerosols which includes a parameterized first indirect aerosol effect on clouds. The effective climate sensitivities are 3.0°C and 2.9°C for the NINT and OMA models, respectively. Each atmospheric version is coupled to two different ocean general circulation models: The GISS ocean model (E2.1‐G) and HYCOM (E2.1‐H). We describe the global mean responses for all future scenarios and spatial patterns of change for surface air temperature and precipitation for four of the marker scenarios: SSP1‐2.6, SSP2‐4.5, SSP4‐6.0, and SSP5‐8.5. By 2100, global mean warming ranges from 1.5°C to 5.2°C relative to 1,850–1,880 mean temperature. Two high‐mitigation scenarios SSP1‐1.9 and SSP1‐2.6 limit the surface warming to below 2°C by the end of the 21st century, except for the NINT E2.1‐H model that simulates 2.2°C of surface warming. For the high emission scenario SSP5‐8.5, the range is 4.6–5.2°C at 2100. Due to about 15% larger effective climate sensitivity and stronger transient climate response in both NINT and OMA CMIP6 models compared to CMIP5 versions, there is a stronger warming by 2100 in the SSP emission scenarios than in the comparable Representative Concentration Pathway (RCP) scenarios in CMIP5. Changes in sea ice area are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with the largest sea ice area decreases occurring during September in the Northern Hemisphere in both E2.1‐G (−1.21 × 106 km2/°C) and E2.1‐H models (−0.94 × 106 km2/°C). Both coupled models project decreases in the Atlantic overturning stream function by 2100. The largest decrease of 56%–65% in the 21st century overturning stream function is produced in the warmest scenario SSP5‐8.5 in the E2.1‐G model, comparable to the reduction in the corresponding CMIP5 GISS‐E2 RCP8.5 simulation. Both low‐end scenarios SSP1‐1.9 and SSP1‐2.6 also simulate substantial reductions of the overturning (9%–37%) with slow recovery of about 10% by the end of the 21st century (relative to the maximum decrease at the middle of the 21st century).

5 citations


08 Dec 2022
TL;DR: In this paper , it was shown that global warming will likely pierce the 1.5°C ceiling in the 2020s and 2°C before 2050, with a post-2010 rate of at least 0.27°C per decade.
Abstract: Improved knowledge of glacial-to-interglacial global temperature change implies that fast-feedback equilibrium climate sensitivity (ECS) is 1.2 +/- 0.3{\deg}C (2$\sigma$) per W/m$^2$. Consistent analysis of temperature over the full Cenozoic era -- including"slow"feedbacks by ice sheets and trace gases -- supports this ECS and implies that CO$_2$ was about 300 ppm in the Pliocene and 400 ppm at transition to a nearly ice-free planet, thus exposing unrealistic lethargy of ice sheet models. Equilibrium global warming including slow feedbacks for today's human-made greenhouse gas (GHG) climate forcing (4.1 W/m$^2$) is 10{\deg}C, reduced to 8{\deg}C by today's aerosols. Decline of aerosol emissions since 2010 should increase the 1970-2010 global warming rate of 0.18{\deg}C per decade to a post-2010 rate of at least 0.27{\deg}C per decade. Under the current geopolitical approach to GHG emissions, global warming will likely pierce the 1.5{\deg}C ceiling in the 2020s and 2{\deg}C before 2050. Impacts on people and nature will accelerate as global warming pumps up hydrologic extremes. The enormity of consequences demands a return to Holocene-level global temperature. Required actions include: 1) a global increasing price on GHG emissions, 2) East-West cooperation in a way that accommodates developing world needs, and 3) intervention with Earth's radiation imbalance to phase down today's massive human-made"geo-transformation"of Earth's climate. These changes will not happen with the current geopolitical approach, but current political crises present an opportunity for reset, especially if young people can grasp their situation.

1 citations


Journal ArticleDOI
TL;DR: In this article , the Earth Polychromatic Imaging Camera (EPIC) is used to acquire high-resolution images of the Earth's sunlit hemisphere from its Lissajous orbit around the Lagrangian L1 point.
Abstract: Thorough comparison to observations is key to developing a credible climate model forecasting capability. Deep Space Climate Observatory (DSCOVR) measurements of Earth’s reflected solar and emitted thermal radiation provide a unique observational perspective that permits a more reliable model/data comparison than is possible with the otherwise available satellite data. The uniqueness is in the DSCOVR satellite’s viewing geometry, which enables continuous viewing of the Earth’s sunlit hemisphere from its Lissajous orbit around the Lagrangian L1 point. The key instrument is the Earth Polychromatic Imaging Camera (EPIC), which views the Earth’s sunlit hemisphere with 1024-by-1024-pixel imagery in 10 narrow spectral bands from 317 to 780 nm, acquiring up to 22 high spatial resolution images per day. The additional feature is that the frequency of EPIC image acquisition is nearly identical to that of the climate GCM data generation scheme where climate data for the entire globe are ‘instantaneously’ calculated at 1-h radiation time-step intervals. Implementation of the SHS (Sunlit Hemisphere Sampling) EPIC-view geometry for the in-line GCM output data sampling establishes a precise self-consistency in the space-time data sampling between EPIC observational and GCM output data generation and sampling. The remaining problem is that the GCM generated data are radiative fluxes, while the EPIC measurements are backscatter-dependent radiances. Radiance to flux conversion is a complex problem with no simple way to convert GCM radiative fluxes into spectral radiances. The more expedient approach is to convert the EPIC spectral radiances into broadband radiances by MODIS/CERES-based regression relationships and then into solar radiative fluxes using the CERES angular distribution models. Averaging over the sunlit hemisphere suppresses the meteorological weather noise, but preserves the intra-seasonal larger scale variability. Longitudinal slicing by the Earth’s rotation permits a self-consistent model/data comparison of the longitudinal model/data differences in the variability of the reflected solar radiation. Ancillary EPIC Composite data provide additional cloud property information for climate model diagnostics. Comparison of EPIC-derived seasonal and longitudinal variability of the Earth’s planetary albedo with the GISS ModelE2 results shows systematic overestimate of cloud reflectivity over the Pacific Ocean with corresponding underestimates over continental land areas.

1 citations


Journal ArticleDOI
TL;DR: In this paper , the authors compared the performance of the NISTAR data and the satellite data using a longitudinal data slicing approach, which eliminates the quasi-chaotic meteorological weather-scale noise while preserving intra-seasonal and planetary-scale variability.
Abstract: Deep Space Climate Observatory (DSCOVR) measurements of Earth’s reflected solar and emitted thermal radiation permit a unique model/data comparison perspective that is not readily available from other satellite data. The key factor is the unique Lissajous orbital viewing geometry from the Lagrangian L1 point, which enables a continuous view of Earth’s sunlit hemisphere. The National Institute of Standards and Technology Advanced Radiometer (NISTAR) is the DSCOVR Mission energy budget instrument, which views the reflected and emitted radiation of the Earth’s sunlit hemisphere by means of single pixel active cavity full-spectrum (Band-A, 0.2–100 μm) and filtered solar wavelength (Band-B, 0.2–4.0 μm; and Band-C, 0.7–4.0 μm) radiometer measurements. An additional solar wavelength photodiode channel (0.3–1.1 μm) provides a calibration reference. The objective of this study is the assessment of climate GCM performance via direct model/data comparisons. Such comparisons are difficult due to quasi-chaotic natural variability present in real-world observational data and in climate GCM simulations. This is where the unique DSCOVR viewing geometry makes possible the longitudinal data slicing methodology for more direct model/data comparison. The key point of the longitudinal slicing approach is that data integration over the entire sunlit hemisphere eliminates the quasi-chaotic meteorological weather-scale noise, while preserving intra-seasonal and planetary-scale variability. The rotation of the Earth that retrieves this climate-style, large-scale longitudinal and seasonal variability. The hemispheric averaging is accomplished automatically in NISTAR measurements with its single-pixel view of the Earth. For climate GCMs, this requires implementing the Sunlit Hemisphere Sampling (SHS) scheme to operate on the GCM run-time output data, utilizing the DSCOVR Satellite Ephemeris data to assure precise viewing geometry between NISTAR measurements and GCM output data, while averaging out the meteorological weather noise. However, GCM generated data are radiative fluxes, while NISTAR (and EPIC) measurements are near-backscattered radiances. Conversing NISTSR measurements into radiative fluxes cannot be accomplished using NISTAR data alone, even with detailed support from conventional satellite data. But the identical viewing geometry of Earth’s sunlit hemisphere, and synergistic analyses of EPIC data make it feasible for this conversion of NISTAR near-backscatter radiances into radiative fluxes.