scispace - formally typeset
Search or ask a question
Author

Andrew Fitzgibbon

Bio: Andrew Fitzgibbon is an academic researcher from Microsoft. The author has contributed to research in topics: Pose & Camera resectioning. The author has an hindex of 72, co-authored 255 publications receiving 34580 citations. Previous affiliations of Andrew Fitzgibbon include University of Oxford & University of Edinburgh.


Papers
More filters
Proceedings ArticleDOI
26 Oct 2011
TL;DR: A system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware, which fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real- time.
Abstract: We present a system for accurate real-time mapping of complex and arbitrary indoor scenes in variable lighting conditions, using only a moving low-cost depth camera and commodity graphics hardware. We fuse all of the depth data streamed from a Kinect sensor into a single global implicit surface model of the observed scene in real-time. The current sensor pose is simultaneously obtained by tracking the live depth frame relative to the global model using a coarse-to-fine iterative closest point (ICP) algorithm, which uses all of the observed depth data available. We demonstrate the advantages of tracking against the growing full surface model compared with frame-to-frame tracking, obtaining tracking and mapping results in constant time within room sized scenes with limited drift and high accuracy. We also show both qualitative and quantitative results relating to various aspects of our tracking and mapping system. Modelling of natural scenes, in real-time with only commodity sensor and GPU hardware, promises an exciting step forward in augmented reality (AR), in particular, it allows dense surfaces to be reconstructed in real-time, with a level of detail and robustness beyond any solution yet presented using passive computer vision.

4,184 citations

Proceedings ArticleDOI
20 Jun 2011
TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Abstract: We propose a new method to quickly and accurately predict 3D positions of body joints from a single depth image, using no temporal information. We take an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem. Our large and highly varied training dataset allows the classifier to estimate body parts invariant to pose, body shape, clothing, etc. Finally we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes. The system runs at 200 frames per second on consumer hardware. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state of the art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.

3,579 citations

Book ChapterDOI
21 Sep 1999
TL;DR: A survey of the theory and methods of photogrammetric bundle adjustment can be found in this article, with a focus on general robust cost functions rather than restricting attention to traditional nonlinear least squares.
Abstract: This paper is a survey of the theory and methods of photogrammetric bundle adjustment, aimed at potential implementors in the computer vision community. Bundle adjustment is the problem of refining a visual reconstruction to produce jointly optimal structure and viewing parameter estimates. Topics covered include: the choice of cost function and robustness; numerical optimization including sparse Newton methods, linearly convergent approximations, updating and recursive methods; gauge (datum) invariance; and quality control. The theory is developed for general robust cost functions rather than restricting attention to traditional nonlinear least squares.

3,521 citations

Journal ArticleDOI
TL;DR: This work takes an object recognition approach, designing an intermediate body parts representation that maps the difficult pose estimation problem into a simpler per-pixel classification problem, and generates confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.
Abstract: We propose a new method to quickly and accurately predict human pose---the 3D positions of body joints---from a single depth image, without depending on information from preceding frames. Our approach is strongly rooted in current object recognition strategies. By designing an intermediate representation in terms of body parts, the difficult pose estimation problem is transformed into a simpler per-pixel classification problem, for which efficient machine learning techniques exist. By using computer graphics to synthesize a very large dataset of training image pairs, one can train a classifier that estimates body part labels from test images invariant to pose, body shape, clothing, and other irrelevances. Finally, we generate confidence-scored 3D proposals of several body joints by reprojecting the classification result and finding local modes.The system runs in under 5ms on the Xbox 360. Our evaluation shows high accuracy on both synthetic and real test sets, and investigates the effect of several training parameters. We achieve state-of-the-art accuracy in our comparison with related work and demonstrate improved generalization over exact whole-skeleton nearest neighbor matching.

3,034 citations

Journal ArticleDOI
25 Aug 1996
TL;DR: This paper presents a new efficient method for fitting ellipses to scattered data that is ellipse-specific so that even bad data will always return an ellipso, and can be solved naturally by a generalized eigensystem.
Abstract: This paper presents a new efficient method for fitting ellipses to scattered data. Previous algorithms either fitted general conics or were computationally expensive. By minimizing the algebraic distance subject to the constraint 4ac-b/sup 2/=1 the new method incorporates the ellipticity constraint into the normalization factor. The new method combines several advantages: 1) it is ellipse-specific so that even bad data will always return an ellipse; 2) it can be solved naturally by a generalized eigensystem, and 3) it is extremely robust, efficient and easy to implement. We compare the proposed method to other approaches and show its robustness on several examples in which other nonellipse-specific approaches would fail or require computationally expensive iterative refinements.

2,568 citations


Cited by
More filters
Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Posted Content
TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,486 citations

01 Jan 2001
TL;DR: This book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts and it will show the best book collections and completed collections.
Abstract: Downloading the book in this website lists can give you more advantages. It will show you the best book collections and completed collections. So many books can be found in this website. So, this is not only this multiple view geometry in computer vision. However, this book is referred to read because it is an inspiring book to give you more chance to get experiences and also thoughts. This is simple, read the soft file of the book and you get it.

14,282 citations

Journal ArticleDOI
TL;DR: An overview of pattern clustering methods from a statistical pattern recognition perspective is presented, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners.
Abstract: Clustering is the unsupervised classification of patterns (observations, data items, or feature vectors) into groups (clusters). The clustering problem has been addressed in many contexts and by researchers in many disciplines; this reflects its broad appeal and usefulness as one of the steps in exploratory data analysis. However, clustering is a difficult problem combinatorially, and differences in assumptions and contexts in different communities has made the transfer of useful generic concepts and methodologies slow to occur. This paper presents an overview of pattern clustering methods from a statistical pattern recognition perspective, with a goal of providing useful advice and references to fundamental concepts accessible to the broad community of clustering practitioners. We present a taxonomy of clustering techniques, and identify cross-cutting themes and recent advances. We also describe some important applications of clustering algorithms such as image segmentation, object recognition, and information retrieval.

14,054 citations