scispace - formally typeset
Search or ask a question

Showing papers by "Antonio Mannino published in 2008"


Journal ArticleDOI
TL;DR: In this paper, the authors developed an empirical algorithm to retrieve surface ocean colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors and investigate the processes that influence the distributions of CDOM and DOC.
Abstract: [1] Oceanographic cruises were conducted within the U.S. Middle Atlantic Bight (MAB) to collect field measurements to develop algorithms to retrieve surface ocean colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) from NASA's MODIS-Aqua and SeaWiFS satellite sensors and to investigate the processes that influence the distributions of CDOM and DOC. In order to develop empirical algorithms for CDOM and DOC, the CDOM absorption coefficient (aCDOM) was correlated with in situ remote sensing reflectance band ratios, and DOC was then derived from aCDOM through the aCDOM to DOC relationships. Our validation analyses demonstrate successful retrieval of DOC and CDOM using MODIS and SeaWiFS with mean absolute percent differences from field measurements of 9.3 ± 7.3% for DOC, 19 ± 14% for aCDOM(355), 15.5 ± 12% for aCDOM(443), and 8.6 ± 4.9% for the CDOM spectral slope. To our knowledge, the algorithms presented here represent the first validated algorithms for satellite retrieval of aCDOM, DOC, and CDOM spectral slope in the coastal ocean. Satellite imagery demonstrates the importance of riverine/estuarine discharge from Chesapeake Bay and Delaware Bay to the export of CDOM and DOC to the coastal ocean. Between spring and summer, photooxidation has a significant impact on CDOM distributions resulting in a pronounced decrease in aCDOM between the midshelf and continental slope region of the MAB. The satellite-derived DOC products demonstrate the net ecosystem production of DOC of 12 to 34 μmol C L−1 between spring and summer. The aCDOM algorithms presented here are applicable to other coastal regions and can also be used to retrieve DOC using region-specific aCDOM to DOC relationships.

259 citations



Journal ArticleDOI
TL;DR: In this article, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB.
Abstract: At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

40 citations