scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Geophysical Research in 2008"


Journal ArticleDOI
TL;DR: In this article, the AER line-by-line (LBL) models were compared with the RTMIP line-By-line results in the longwave and shortwave for clear sky scenarios previously examined by the radiative transfer model intercomparison project.
Abstract: A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.

3,344 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950-2006.
Abstract: We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950-2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and attention to finding the most appropriate method for spatial interpolation of daily climate observations. The gridded data are delivered on four spatial resolutions to match the grids used in previous products as well as many of the rotated pole Regional Climate Models (RCMs) currently in use. Each data set has been designed to provide the best estimate of grid box averages rather than point values to enable direct comparison with RCMs. We employ a three-step process of interpolation, by first interpolating the monthly precipitation totals and monthly mean temperature using three-dimensional thin-plate splines, then interpolating the daily anomalies using indicator and universal kriging for precipitation and kriging with an external drift for temperature, then combining the monthly and daily estimates. Interpolation uncertainty is quantified by the provision of daily standard errors for every grid square. The daily uncertainty averaged across the entire region is shown to be largely dependent on the season and number of contributing observations. We examine the effect that interpolation has on the magnitude of the extremes in the observations by calculating areal reduction factors for daily maximum temperature and precipitation events with return periods up to 10 years. Copyright 2008 by the American Geophysical Union.

2,359 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) to estimate sea ice concentration from the channels near 90 GHz, despite the enhanced atmospheric influence in these channels.
Abstract: [1] Recent progress in sea ice concentration remote sensing by satellite microwave radiometers has been stimulated by two developments: First, the new sensor Advanced Microwave Scanning Radiometer-EOS (AMSR-E) offers spatial resolutions of approximately 6 × 4 km at 89 GHz, nearly 3 times the resolution of the standard sensor SSM/I at 85 GHz (15 × 13 km). Second, a new algorithm enables estimation of sea ice concentration from the channels near 90 GHz, despite the enhanced atmospheric influence in these channels. This allows full exploitation of their horizontal resolution, which is up to 4 times finer than that of the channels near 19 and 37 GHz, the frequencies used by the most widespread algorithms for sea ice retrieval, the NASA-Team and Bootstrap algorithms. The ASI algorithm used combines a model for retrieving the sea ice concentration from SSM/I 85-GHz data proposed by Svendsen et al. (1987) with an ocean mask derived from the 18-, 23-, and 37-GHz AMSR-E data using weather filters. During two ship campaigns, the correlation of ASI, NASA-Team 2, and Bootstrap algorithms ice concentrations with bridge observations were 0.80, 0.79, and 0.81, respectively. Systematic differences over the complete AMSR-E period (2002–2006) between ASI and NASA-Team 2 are below −2 ± 8.8%, and between ASI and Bootstrap are 1.7 ± 10.8%. Among the geophysical implications of the ASI algorithm are: (1) Its higher spatial resolution allows better estimation of crucial variables in numerical atmospheric and ocean models, for example, the heat flux between ocean and atmosphere, especially near coastlines and in polynyas. (2) It provides an additional time series of ice area and extent for climate studies.

1,105 citations


Journal ArticleDOI
TL;DR: An index that gauges the fidelity of model variability on interannual time-scales is found to be only weakly correlated with an index of the mean climate performance, illustrating the importance of evaluating a broad spectrum of climate processes and phenomena.
Abstract: [1] Objective measures of climate model performance are proposed and used to assess simulations of the 20th century, which are available from the Coupled Model Intercomparison Project (CMIP3) archive. The primary focus of this analysis is on the climatology of atmospheric fields. For each variable considered, the models are ranked according to a measure of relative error. Based on an average of the relative errors over all fields considered, some models appear to perform substantially better than others. Forming a single index of model performance, however, can be misleading in that it hides a more complex picture of the relative merits of different models. This is demonstrated by examining individual variables and showing that the relative ranking of models varies considerably from one variable to the next. A remarkable exception to this finding is that the so-called “mean model” consistently outperforms all other models in nearly every respect. The usefulness, limitations and robustness of the metrics defined here are evaluated 1) by examining whether the information provided by each metric is correlated in any way with the others, and 2) by determining how sensitive the metrics are to such factors as observational uncertainty, spatial scale, and the domain considered (e.g., tropics versus extra-tropics). An index that gauges the fidelity of model variability on interannual time-scales is found to be only weakly correlated with an index of the mean climate performance. This illustrates the importance of evaluating a broad spectrum of climate processes and phenomena since accurate simulation of one aspect of climate does not guarantee accurate representation of other aspects. Once a broad suite of metrics has been developed to characterize model performance it may become possible to identify optimal subsets for various applications.

1,048 citations


Journal ArticleDOI
TL;DR: In this article, a compilation of the spectral absorption coefficient of ice Ih is presented for temperatures near the melting point, superseding the compilation of Warren (1984), and significant changes are made to nearly all spectral regions.
Abstract: [1] A compilation of the spectral absorption coefficient of ice Ih is presented for temperatures near the melting point, superseding the compilation of Warren (1984). Significant changes are made to nearly all spectral regions. The blue and near-ultraviolet absorption is much weaker than the prior estimates, which were already very small. The near-infrared absorption coefficient differs by as much as a factor of 2 from the prior compilation at some wavelengths. The midinfrared absorption coefficient is rather uncertain in the weakly absorbing regions near 9 and 20 μm. New far-infrared measurements at low temperatures are extrapolated to higher temperatures, which shifts the peak positions. New microwave measurements find absorption much weaker than previously reported, by factors of 2–5. The real part of the index of refraction is computed using Kramers-Kronig analysis; it differs from the prior compilation only in the far infrared. Tables of the revised optical constants are available on a website.

916 citations


Journal ArticleDOI
TL;DR: In this paper, a radiative transfer-based land parameter retrieval model is used for soil moisture data retrieval, which is consistent in its retrieval approach for the entire period of data record.
Abstract: global product and is consistent in its retrieval approach for the entire period of data record. The moisture retrievals are made with a radiative transfer-based land parameter retrieval model. The various sensors have different technical specifications, including primary wavelength, spatial resolution, and temporal frequency of coverage. These sensor specifications and their effect on the data retrievals are discussed. The model is described in detail, and the quality of the data with respect to the different sensors is discussed as well. Examples of the different sensor retrievals illustrating global patterns are presented. Additional validation studies were performed with large-scale observational soil moisture data sets and are also presented. The data will be made available for use by the general science community.

908 citations


Journal ArticleDOI
TL;DR: In this paper, a new model for simulating aerosol interactions and chemistry (MOSAIC) is proposed, which couples an accurate and computationally efficient thermodynamic module with a new dynamic gas-particle partitioning module described here.
Abstract: This paper describes the development and evaluation of a new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), with a special focus on addressing the long-standing issues associated with solving the dynamic partitioning of semi-volatile inorganic gases (HNO3, HCl, and NH3) to size-distributed atmospheric aerosol particles. The coupled ordinary differential equations (ODE) for dynamic gas-particle mass transfer are extremely stiff, and the available numerical techniques are either too expensive or produce oscillatory and/or inaccurate steady-state solutions. These limitations are overcome in MOSAIC, which couples an accurate and computationally efficient thermodynamic module [Zaveri et al., 2005a,b] with a new dynamic gas-particle partitioning module described here. The algorithm involves time-split integrations of non-volatile and semi-volatile species, and a new concept of “dynamic pH” and an adaptive time-stepping scheme hold the key to smooth, accurate, and efficient solutions over the entire relative humidity range. MOSAIC is found to be in excellent agreement with a benchmark version of the model that uses LSODES (a Gear solver) for rigorously integrating the stiff ODEs. The steady-state MOSAIC results for monodisperse aerosol test cases are also in excellent agreement with those obtained with the benchmark equilibrium model AIM. MOSAIC is also evaluated within a 3-D model, andmore » the average CPU speed is estimated to be over 100 times faster than the dynamic aerosol model MADM [Pilinis et al., 2000]. These results suggest that MOSAIC is highly attractive for use in 3-D aerosol and air quality models in which both accuracy and efficiency are critically important.« less

899 citations


Journal ArticleDOI
TL;DR: CloudSat data has been used for cloud profiling radar (CPR) as discussed by the authors, which has been operating since 2 June 2006 and has proven to be remarkably stable since turn-on.
Abstract: [1] This paper reports on the early mission performance of the radar and other major aspects of the CloudSat mission. The Cloudsat cloud profiling radar (CPR) has been operating since 2 June 2006 and has proven to be remarkably stable since turn-on. A number of products have been developed using these space-borne radar data as principal inputs. Combined with other A-Train sensor data, these new observations offer unique, global views of the vertical structure of clouds and precipitation jointly. Approximately 11% of clouds detected over the global oceans produce precipitation that, in all likelihood, reaches the surface. Warm precipitating clouds are both wetter and composed of larger particles than nonprecipitating clouds. The frequency of precipitation increases significantly with increasing cloud depth, and the increased depth and water path of precipitating clouds leads to increased optical depths and substantially more sunlight reflected from precipitating clouds compared to than nonprecipitating warm clouds. The CloudSat observations also provide an authoritative estimate of global ice water paths. The observed ice water paths are larger than those predicted from most climate models. CloudSat observations also indicate that clouds radiatively heat the global mean atmospheric column (relative to clear skies) by about 10 Wm−2. Although this heating appears to be contributed almost equally by solar and infrared absorption, the latter contribution is shown to vary significantly with latitude being influenced by the predominant cloud structures of the different region in questions.

852 citations


Journal ArticleDOI
TL;DR: In this article, three objective techniques used to obtain gauge-based daily precipitation analyses over global land areas are assessed, including the inverse distance weighting algorithms of Cressman (1959), Shepard (1968), and the optimal interpolation (OI) method of Gandin (1965).
Abstract: [1] Three objective techniques used to obtain gauge-based daily precipitation analyses over global land areas are assessed. The objective techniques include the inverse-distance weighting algorithms of Cressman (1959) and Shepard (1968), and the optimal interpolation (OI) method of Gandin (1965). Intercomparisons and cross-validation tests are conducted to examine their performance over various parts of the globe where station network densities are different. The gauge data used in the examinations are quality controlled daily precipitation reports from roughly 16,000 stations over the global land areas that have been collected by the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC). Data sources include daily summary files from the Global Telecommunication System (GTS), and the CPC unified daily gauge data sets over the contiguous United States (CONUS), Mexico, and South America. All three objective techniques are capable of generating useful daily precipitation analyses with biases of generally less than 1% over most parts of the global land areas. The OI method consistently performs the best among the three techniques for almost all situations (regions, seasons, and network densities). The Shepard scheme compares reasonably well with the OI, while the Cressman method tends to generate smooth precipitation fields with wider raining areas relative to the station observations. The quality of the gauge-based analyses degrades as the network of station observations becomes sparser, although the OI technique exhibits relatively stable performance statistics over regions covered by fewer gauges.

846 citations


Journal ArticleDOI
TL;DR: In this article, the authors utilized the full temporal (quasi-daily) resolution of satellite-derived sea ice data to track spatially the annual ice edge advance and retreat from 1979 to 2004.
Abstract: [1] Previous studies have shown strong contrasting trends in annual sea ice duration and in monthly sea ice concentration in two regions of the Southern Ocean: decreases in the western Antarctic Peninsula/southern Bellingshausen Sea (wAP/sBS) region and increases in the western Ross Sea (wRS) region. To better understand the evolution of these regional sea ice trends, we utilize the full temporal (quasi-daily) resolution of satellite-derived sea ice data to track spatially the annual ice edge advance and retreat from 1979 to 2004. These newly analyzed data reveal that sea ice is retreating 31 ± 10 days earlier and advancing 54 ± 9 days later in the wAP/sBS region (i.e., total change over 1979-2004), whereas in the wRS region, sea ice is retreating 29 ± 6 days later and advancing 31 ± 6 days earlier. Changes in the wAP/sBS and wRS regions, particularly as observed during sea ice advance, occurred in association with decadal changes in the mean state of the Southern Annular Mode (SAM; negative in the 1980s and positive in the 1990s) and the high-latitude response to El Nino-Southem Oscillation (ENSO). In general, the high-latitude ice-atmosphere response to ENSO was strongest when -SAM was coincident with El Nino and when +SAM was coincident with La Nina, particularly in the wAP/sBS region. In total, there were 7 of 11 -SAMs between 1980 and 1990 and the 7 of 10 +SAMs between 1991 and 2000 that were associated with consistent decadal sea ice changes in the wAP/sBS and wRS regions, respectively. Elsewhere, ENSO/SAM-related sea ice changes were not as consistent over time (e.g., western Weddell, Amundsen, and eastern Ross Sea region), or variability in general was high (e.g., central/ eastern Weddell and along East Antarctica).

768 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the implementation of a selected set of these parameterizations and their effects on the simulated hydrological cycle, and the results from a set of offline simulations were compared with observed data for runoff, river discharge, soil moisture, and total water storage.
Abstract: [1] The Community Land Model version 3 (CLM3) is the land component of the Community Climate System Model (CCSM). CLM3 has energy and water biases resulting from deficiencies in some of its canopy and soil parameterizations related to hydrological processes. Recent research by the community that utilizes CLM3 and the family of CCSM models has indicated several promising approaches to alleviating these biases. This paper describes the implementation of a selected set of these parameterizations and their effects on the simulated hydrological cycle. The modifications consist of surface data sets based on Moderate Resolution Imaging Spectroradiometer products, new parameterizations for canopy integration, canopy interception, frozen soil, soil water availability, and soil evaporation, a TOPMODEL-based model for surface and subsurface runoff, a groundwater model for determining water table depth, and the introduction of a factor to simulate nitrogen limitation on plant productivity. The results from a set of offline simulations were compared with observed data for runoff, river discharge, soil moisture, and total water storage to assess the performance of the new model (referred to as CLM3.5). CLM3.5 exhibits significant improvements in its partitioning of global evapotranspiration (ET) which result in wetter soils, less plant water stress, increased transpiration and photosynthesis, and an improved annual cycle of total water storage. Phase and amplitude of the runoff annual cycle is generally improved. Dramatic improvements in vegetation biogeography result when CLM3.5 is coupled to a dynamic global vegetation model. Lower than observed soil moisture variability in the rooting zone is noted as a remaining deficiency.

Journal ArticleDOI
TL;DR: In this paper, the authors compare with ground-based AERONET observations of aerosol optical depth (AOD) to within expected accuracy more than 60% of the time over ocean and more than 72% over land.
Abstract: [1] The recently released Collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products provide a consistent record of the Earth's aerosol system. Comparing with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean and better than the previous results for land. However, the new collection introduces a 0.015 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is higher than what had been expected. The cause of the offset is unknown, but changes to calibration are a possible explanation. Even though Terra's higher ocean AOD is unexpected and unexplained, we present climatological analyses of data from both sensors. We find that the multiannual global mean AOD at 550 nm over oceans is 0.13 for Aqua and 0.14 for Terra, and over land it is 0.19 in both Aqua and Terra. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. Aerosol particle size associated with these very cloudy situations does not show a drastic change over ocean, but does over land. Regionally, aerosol amounts vary from polluted areas such as east Asia and India, to the cleanest regions such as Australia and the northern continents. As AOD increases over maritime background conditions, fine mode aerosol dominates over dust over all oceans, except over the tropical Atlantic downwind of the Sahara and during some months over the Arabian Sea.

Journal ArticleDOI
TL;DR: In this article, the authors estimate a time series of geocenter anomalies from a combination of data from the GravityRecoveryandClimateExperiment (GRACE)satellitemission and the output from ocean models.
Abstract: [1] In this study, we estimate a time series of geocenter anomalies from a combination of data from the GravityRecoveryandClimateExperiment(GRACE)satellitemissionandthe outputfromoceanmodels.Amatrixequationisderivedrelating totalgeocentervariations to the GRACE coefficients of degrees two and higher and to the oceanic component of the degree one coefficients. We estimate the oceanic component from two state-of-the-art ocean models. Results are compared to independent estimates of geocenter derived from other satellite data, such as satellite laser ranging and GPS. Finally, we compute degree one coefficients that are consistent with the processing applied to the GRACE Level-2 gravity field coefficients. The estimated degree one coefficients can be used to improve estimates of mass variability from GRACE, which alone cannot provide them directly.

Journal ArticleDOI
TL;DR: This paper extracted volcanic sulfate signals from each ice core record by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31-year running median absolute deviation.
Abstract: [1] Understanding natural causes of climate change is vital to evaluate the relative impacts of human pollution and land surface modification on climate. We have investigated one of the most important natural causes of climate change, volcanic eruptions, by using 54 ice core records from both the Arctic and Antarctica. Our recently collected suite of ice core data, more than double the number of cores ever used before, reduces errors inherent in reconstructions based on a single or small number of cores, which enables us to obtain much higher accuracy in both detection of events and quantification of the radiative effects. We extracted volcanic deposition signals from each ice core record by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31-year running median absolute deviation. We then studied the spatial pattern of volcanic sulfate deposition on Greenland and Antarctica and combined this knowledge with a new understanding of stratospheric transport of volcanic aerosols to produce a forcing data set as a function of month, latitude, and altitude for the past 1500 years. We estimated the uncertainties associated with the choice of volcanic signal extraction criteria, ice core sulfate deposition to stratospheric loading calibration factor, and the season for the eruptions without a recorded month. We forced an energy balance climate model with this new volcanic forcing data set, together with solar and anthropogenic forcing, to simulate the large-scale temperature response. The results agree well with instrumental observations for the past 150 years and with proxy records for the entire period. Through better characterization of the natural causes of climate change, this new data set will lead to improved prediction of anthropogenic impacts on climate. The new data set of stratospheric sulfate injections from volcanic eruptions for the past 1500 years, as a function of latitude, altitude, and month, is available for download in a format suitable for forcing general circulation models of the climate system.

Journal ArticleDOI
TL;DR: In this paper, a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including the best knowledge of source and sink processes was conducted.
Abstract: [1] We construct global budgets of atmospheric glyoxal and methylglyoxal with the goal of quantifying their potential for global secondary organic aerosol (SOA) formation via irreversible uptake by aqueous aerosols and clouds. We conduct a detailed simulation of glyoxal and methylglyoxal in the GEOS-Chem global 3-D chemical transport model including our best knowledge of source and sink processes. Our resulting best estimates of the global sources of glyoxal and methylglyoxal are 45 Tg a−1 and 140 Tg a−1, respectively. Oxidation of biogenic isoprene contributes globally 47% of glyoxal and 79% of methylglyoxal. The second most important precursors are acetylene (mostly anthropogenic) for glyoxal and acetone (mostly biogenic) for methylglyoxal. Both acetylene and acetone have long lifetimes and provide a source of dicarbonyls in the free troposphere. Atmospheric lifetimes of glyoxal and methylglyoxal in the model are 2.9 h and 1.6 h, respectively, mostly determined by photolysis. Simulated dicarbonyl concentrations in continental surface air at northern midlatitudes are in the range 10–100 ppt, consistent with in situ measurements. On a global scale, the highest concentrations are over biomass burning regions, in agreement with glyoxal column observations from the SCIAMACHY satellite instrument. SCIAMACHY and a few ship cruises also suggest a large marine source of dicarbonyls missing from our model. The global source of SOA from the irreversible uptake of dicarbonyls in GEOS-Chem is 11 Tg C a−1, including 2.6 Tg C a−1 from glyoxal and 8 Tg C a−1 from methylglyoxal; 90% of this source takes place in clouds. The magnitude of the global SOA source from dicarbonyls is comparable to that computed in GEOS-Chem from the standard mechanism involving reversible partitioning of semivolatile products from the oxidation of monoterpenes, sesquiterpenes, isoprene, and aromatics.

Journal ArticleDOI
TL;DR: In this article, the authors used a combination of two large individual data sets of station observations collected from the Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System (GHCN + CAMS), so that the new data set can capture most common temporal-spatial features in the observed climatology and anomaly fields over both regional and global domains.
Abstract: [1] A station observation-based global land monthly mean surface air temperature dataset at 0.5 × 0.5 latitude-longitude resolution for the period from 1948 to the present was developed recently at the Climate Prediction Center, National Centers for Environmental Prediction. This data set is different from some existing surface air temperature data sets in: (1) using a combination of two large individual data sets of station observations collected from the Global Historical Climatology Network version 2 and the Climate Anomaly Monitoring System (GHCN + CAMS), so it can be regularly updated in near real time with plenty of stations and (2) some unique interpolation methods, such as the anomaly interpolation approach with spatially-temporally varying temperature lapse rates derived from the observation-based Reanalysis for topographic adjustment. When compared with several existing observation-based land surface air temperature data sets, the preliminary results show that the quality of this new GHCN + CAMS land surface air temperature analysis is reasonably good and the new data set can capture most common temporal-spatial features in the observed climatology and anomaly fields over both regional and global domains. The study also reveals that there are clear biases between the observed surface air temperature and the existing Reanalysis data sets, and they vary in space and seasons. Therefore the Reanalysis 2 m temperature data sets may not be suitable for model forcing and validation. The GHCN + CAMS data set will be mainly used as one of land surface meteorological forcing inputs to derive other land surface variables, such as soil moisture, evaporation, surface runoff, snow accumulation and snow melt, etc. As a byproduct, this monthly mean surface air temperature data set can also be applied to monitor surface air temperature variations over global land routinely or to verify the performance of model simulation and prediction.

Journal ArticleDOI
TL;DR: In this paper, a 3D model of the anisotropic shear wave velocity in the Earth's mantle has been proposed, which combines a large data set of surface wave phase anomalies, long-period waveforms, and body wave travel times to construct a three-dimensional model.
Abstract: [1] We combine a new, large data set of surface wave phase anomalies, long-period waveforms, and body wave travel times to construct a three-dimensional model of the anisotropic shear wave velocity in the Earth's mantle. Our modeling approach is improved and more comprehensive compared to our earlier studies and involves the development and implementation of a new spherically symmetric reference model, simultaneous inversion for velocity and anisotropy, as well as discontinuity topographies, and implementation of nonlinear crustal corrections for waveforms. A comparison of our new three-dimensional model, S362ANI, with two other models derived from comparable data sets but using different techniques reveals persistent features: (1) strong, ∼200-km-thick, high-velocity anomalies beneath cratons, likely representing the continental lithosphere, underlain by weaker, fast anomalies extending below 250 km, which may represent continental roots, (2) weak velocity heterogeneity between 250 and 400 km depths, (3) fast anomalies extending horizontally up to 2000-3000 km in the mantle transition zone beneath subduction zones, (4) lack of strong long-wavelength heterogeneity below 650 km suggesting inhibiting character of the upper mantle-lower mantle boundary, and (5) slow-velocity superplumes beneath the Pacific and Africa. The shear wave radial anisotropy is strongest at 120 km depth, in particular beneath the central Pacific. Lateral anisotropic variations appreciably improve the fit to data that are predominantly sensitive to the uppermost and lowermost mantle but not to the waveforms that control the transition zone and midmantle depths. Tradeoffs between lateral variations in velocity and anisotropy are negligible in the uppermost mantle but noticeable at the bottom of the mantle.

Journal ArticleDOI
TL;DR: In this paper, a 9-year time series of daily primary production calculated from remotely sensed ocean color, sea surface temperature, and sea ice concentration using a primary production algorithm parameterized specifically for use in Southern Ocean waters was presented.
Abstract: [1] Estimates of primary production in the Southern Ocean are difficult to obtain but are essential if we are to understand its role in the global carbon cycle. Here we present a 9-year time series of daily primary production calculated from remotely sensed ocean color, sea surface temperature, and sea ice concentration using a primary production algorithm parameterized specifically for use in Southern Ocean waters. Results suggest that total annual production in waters south of 50°S averaged 1949 ± 70.1 Tg C a−1 (where a is years) between 1998 and 2006, approximately half that of previous estimates. The large but relatively unproductive pelagic province accounted for ∼90% of Southern Ocean production, while area normalized rates of production were greatest on the much smaller continental shelf (109 g C m−2 a−1). Surprisingly, production in the marginal ice zone was only slightly higher than in the pelagic province. The Ross Sea was the most productive sector of the Southern Ocean (mean = 503 Tg C a−1), followed closely by the Weddell Sea (mean = 477 Tg C a−1). Unlike the Arctic Ocean, there was no secular trend in either sea ice cover or annual primary production in the Southern Ocean during our 9-year study. Interannual variability in annual production was most closely tied to changes in sea ice cover, although changes in sea surface temperature also played a role. Only 31% of the variation in annual production was explained by the Southern Annular Mode. Annual primary production could increase in the future as stronger winds increase nutrient upwelling.

Journal ArticleDOI
TL;DR: The Horizontal Wind Model (HWM07) as mentioned in this paper provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0-500 km).
Abstract: [1] The new Horizontal Wind Model (HWM07) provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0–500 km). It represents over 50 years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. The computer model is a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. It includes representations of the zonal mean circulation, stationary planetary waves, migrating tides, and the seasonal modulation thereof. HWM07 is composed of two components, a quiet time component for the background state described in this paper and a geomagnetic storm time component (DWM07) described in a companion paper.

Journal ArticleDOI
TL;DR: In this article, the authors derived the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency and found that the seeds of chorus emissions with a rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude.
Abstract: [1] The generation process of whistler-mode chorus emissions is analyzed by both theory and simulation. Driven by an assumed strong temperature anisotropy of energetic electrons, the initial wave growth of chorus is linear. After the linear growth phase, the wave amplitude grows nonlinearly. It is found that the seeds of chorus emissions with rising frequency are generated near the magnetic equator as a result of a nonlinear growth mechanism that depends on the wave amplitude. We derive the relativistic second-order resonance condition for a whistler-mode wave with a varying frequency. Wave trapping of resonant electrons near the equator results in the formation of an electromagnetic electron hole in the wave phase space. For a specific wave phase variation, corresponding to a rising frequency, the electron hole can form a resonant current that causes growth of a wave with a rising frequency. Seeds of chorus elements grow from the saturation level of the whistler-mode instability at the equator and then propagate away from the equator. In the frame of reference moving with the group velocity, the wave frequency is constant. The wave amplitude is amplified by the nonlinear resonant current, which is sustained by the increasing inhomogeneity of the dipole magnetic field over some distance from the equator. Chorus elements are generated successively at the equator so long as a sufficient flux of energetic electrons with a strong temperature anisotropy is present.

Journal ArticleDOI
TL;DR: In this article, stable water isotopes (H218O and HDO) have been introduced in a single column model including the Emanuel convection parameterization, and the physical processes underlying the amount effect and propose a methodology to quantify their relative contributions.
Abstract: [1] In the tropics, the proportion of heavier water isotopes in precipitation is anticorrelated with the precipitation amount. The physical processes underlying this so-called amount effect are still poorly understood and quantified. In the present study, stable water isotopes (H218O and HDO) have been introduced in a single column model including the Emanuel convection parameterization. We investigate the physical processes underlying the amount effect and propose a methodology to quantify their relative contributions. We focus on convective processes, since the idealized framework of the single column models does not allow us to consider the effects of large-scale horizontal advections of air masses of different isotopic signatures. We show that two kinds of processes predominantly explain the amount effect: first, the reevaporation of the falling rain and the diffusive exchanges with the surrounding vapor; and second, the recycling of the subcloud layer vapor feeding the convective system by convective fluxes. This highlights the importance of a detailed representation of rain evaporation processes to simulate accurately the isotopic composition of precipitation in the tropics. The variability of the isotopic composition on different timescales (from days to months) is also studied using a unidimensional simulation of the Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) campaign. The amount effect is best observable at intraseasonal or longer timescales. The period of time over which convective activity significantly affects the isotopic composition of precipitation is related to the residence time of water within atmospheric reservoirs.

Journal ArticleDOI
TL;DR: In this paper, the authors take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend.
Abstract: Arguably, the most remarkable manifestation of change in the polar regions is the rapid decline (of about -10 %/decade) in the Arctic perennial ice cover. Changes in the global sea ice cover, however, are more modest, being slightly positive in the Southern Hemisphere and slightly negative in the Northern Hemisphere, the significance of which has not been adequately assessed because of unknown errors in the satellite historical data. We take advantage of the recent and more accurate AMSR-E data to evaluate the true seasonal and interannual variability of the sea ice cover, assess the accuracy of historical data, and determine the real trend. Consistently derived ice concentrations from AMSR-E, SSM/I, and SMMR data were analyzed and a slight bias is observed between AMSR-E and SSM/I data mainly because of differences in resolution. Analysis of the combine SMMR, SSM/I and AMSR-E data set, with the bias corrected, shows that the trends in extent and area of sea ice in the Arctic region is -3.4 +/- 0.2 and -4.0 +/- 0.2 % per decade, respectively, while the corresponding values for the Antarctic region is 0.9 +/- 0.2 and 1.7 .+/- 0.3 % per decade. The higher resolution of the AMSR-E provides an improved determination of the location of the ice edge while the SSM/I data show an ice edge about 6 to 12 km further away from the ice pack. Although the current record of AMSR-E is less than 5 years, the data can be utilized in combination with historical data for more accurate determination of the variability and trends in the ice cover.

Journal ArticleDOI
TL;DR: In this paper, a major product of organic matter decomposition in lakes, Methane (CH4) represents a major contribution of organic decomposition. Once produced in the sediments, CH4 can be either oxidized or emitted as a greenhouse gas to the atmosphere.
Abstract: Methane (CH4) represents a major product of organic matter decomposition in lakes. Once produced in the sediments, CH4 can be either oxidized or emitted as a greenhouse gas to the atmosphere. Lakes ...

Journal ArticleDOI
TL;DR: In this paper, the variability in the quality of 134 DOM samples collected from 12 Long Term Ecological Research stations by quantification of organic carbon and nitrogen concentration in addition to analysis of UV-visible absorbance and fluorescence spectra were further characterized by parallel factor analysis.
Abstract: [1] Source, transformation, and preservation mechanisms of dissolved organic matter (DOM) remain elemental questions in contemporary marine and aquatic sciences and represent a missing link in models of global elemental cycles. Although the chemical character of DOM is central to its fate in the global carbon cycle, DOM characterizations in long-term ecological research programs are rarely performed. We analyzed the variability in the quality of 134 DOM samples collected from 12 Long Term Ecological Research stations by quantification of organic carbon and nitrogen concentration in addition to analysis of UV-visible absorbance and fluorescence spectra. The fluorescence spectra were further characterized by parallel factor analysis. There was a large range in both concentration and quality of the DOM, with the dissolved organic carbon (DOC) concentration ranging from less than 1 mgC/L to over 30 mgC/L. The ranges of specific UV absorbance and fluorescence parameters suggested significant variations in DOM composition within a specific study area, on both spatial and temporal scales. There was no correlation between DOC concentration and any DOM quality parameter, illustrating that comparing across biomes, large variations in DOM quality are not necessarily associated with corresponding large ranges in DOC concentrations. The data presented here emphasize that optical properties of DOM can be highly variable and controlled by different physical (e.g., hydrology), chemical (e.g., photoreactivity/redox conditions), and biological (e.g., primary productivity) processes, and as such can have important ecological consequences. This study demonstrates that relatively simple DOM absorbance and/or fluorescence measurements can be incorporated into long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter dynamics in aquatic ecosystems.

Journal ArticleDOI
TL;DR: In this paper, a force-balance model was used to investigate the relationship between the critical Shields stress and the relative roughness of the sediment in laboratory flumes and natural streams.
Abstract: Data from laboratory flumes and natural streams show that the critical Shields stress for initial sediment motion increases with channel slope, which indicates that particles of the same size are more stable on steeper slopes. This observation is contrary to standard models that predict reduced stability with increasing slope due to the added downstream gravitational force. Processes that might explain this discrepancy are explored using a simple force-balance model, including increased drag from channel walls and bed morphology, variable friction angles, grain emergence, flow aeration, and changes to the local flow velocity and turbulent fluctuations. Surprisingly, increased drag due to changes in bed morphology does not appear to be the cause of the slope dependency because both the magnitude and trend of the critical Shields stress are similar for flume experiments and natural streams, and significant variations in bed morphology in flumes is unlikely. Instead, grain emergence and changes in local flow velocity and turbulent fluctuations seem to be responsible for the slope dependency due to the coincident increase in the ratio of bed-roughness scale to flow depth (i.e., relative roughness). A model for the local velocity within the grain-roughness layer is proposed based on a 1-D eddy viscosity with wake mixing. In addition, the magnitude of near-bed turbulent fluctuations is shown to depend on the depth-averaged flow velocity and the relative roughness. Extension of the model to mixed grain sizes indicates that the coarser fraction becomes increasingly difficult to transport on steeper slopes.

Journal ArticleDOI
TL;DR: In this paper, the authors report the estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel−1 and document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data
Abstract: [1] The objectives of this paper are twofold: first, to report our estimates of the meter-to-decameter-scale topography and slopes of candidate landing sites for the Phoenix mission, based on analysis of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images with a typical pixel scale of 3 m and Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) images at 0.3 m pixel−1 and, second, to document in detail the geometric calibration, software, and procedures on which the photogrammetric analysis of HiRISE data is based. A combination of optical design modeling, laboratory observations, star images, and Mars images form the basis for software in the U.S. Geological Survey Integrated Software for Imagers and Spectrometers (ISIS) 3 system that corrects the images for a variety of distortions with single-pixel or subpixel accuracy. Corrected images are analyzed in the commercial photogrammetric software SOCET SET (® BAE Systems), yielding digital topographic models (DTMs) with a grid spacing of 1 m (3–4 pixels) that require minimal interactive editing. Photoclinometry yields DTMs with single-pixel grid spacing. Slopes from MOC and HiRISE are comparable throughout the latitude zone of interest and compare favorably with those where past missions have landed successfully; only the Mars Exploration Rover (MER) B site in Meridiani Planum is smoother. MOC results at multiple locations have root-mean-square (RMS) bidirectional slopes of 0.8–4.5° at baselines of 3–10 m. HiRISE stereopairs (one per final candidate site and one in the former site) yield 1.8–2.8° slopes at 1-m baseline. Slopes at 1 m from photoclinometry are also in the range 2–3° after correction for image blur. Slopes exceeding the 16° Phoenix safety limit are extremely rare.

Journal ArticleDOI
TL;DR: In this article, a combined CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data cirrus cloud algorithm was used to identify those clouds that would likely be classified as cirrus by a surface weather observer.
Abstract: [1] The cirrus clouds of the upper troposphere are globally widespread and are important regulators of the radiative balance, and hence climate, of the Earth-atmosphere system. Despite their wide distribution, however, cirrus are difficult to study from satellite radiance measurements or from scattered ground observing sites because they can occur as part of multilayered cloud systems and are characteristically optically thin. The need to better characterize the global distribution of cirrus clouds was therefore a major justification for the formation flying of the CloudSat and CALIPSO satellites, which support a cloud radar and polarization lidar, respectively. Measurements by these active remote sensors, when analyzed by appropriate algorithms, have the ability to identify and accurately measure the locations and heights of this category of clouds. The combined CloudSat/ Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data cirrus cloud algorithm used in this study is aimed at identifying those clouds that would likely be classified as cirrus by a surface weather observer: it is based on previous experience with multiple remote sensor approaches and knowledge gleaned from extensive surface lidar and radar observations of visually identified cirrus clouds with a minimum of a priori assumptions. We report on the global and seasonal frequencies of cirrus clouds, and on their heights and thicknesses obtained over the initial 1 year of data collected. We find a global average frequency of cirrus cloud occurrence of 16.7%. These new results are compared with other cirrus cloud climatologies and are interpreted in terms of local cirrus cloud formation mechanisms and the responsible global weather phenomena.

Journal ArticleDOI
TL;DR: In this article, the authors describe the retrievals algorithm used to determine temperature and height from radiance measurements by the Microwave Limb Sounder on EOS Aura, which is a "limbscanning" instrument, meaning that it views the atmosphere along paths that do not intersect the surface.
Abstract: This paper describes the retrievals algorithm used to determine temperature and height from radiance measurements by the Microwave Limb Sounder on EOS Aura. MLS is a "limbscanning" instrument, meaning that it views the atmosphere along paths that do not intersect the surface - it actually looks forwards from the Aura satellite. This means that the temperature retrievals are for a "profile" of the atmosphere somewhat ahead of the satellite. Because of the need to view a finite sample of the atmosphere, the sample spans a box about 1.5km deep and several tens of kilometers in width; the optical characteristics of the atmosphere mean that the sample is representative of a tube about 200-300km long in the direction of view. The retrievals use temperature analyses from NASA's Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system as a priori states. The temperature retrievals are somewhat deperrde~zt on these a priori states, especially in the lower stratosphere. An important part of the validation of any new dataset involves comparison with other, independent datasets. A large part of this study is concerned with such comparisons, using a number of independent space-based measurements obtained using different techniques, and with meteorological analyses. The MLS temperature data are shown to have biases that vary with height, but also depend on the validation dataset. MLS data are apparently biased slightly cold relative to correlative data in the upper troposphere and slightly warm in the middle stratosphere. A warm MLS bias in the upper stratosphere may be due to a cold bias in GEOS-5 temperatures.

Journal ArticleDOI
TL;DR: In this paper, the authors simulate the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE.
Abstract: [1] Anthropogenic stratospheric aerosol production, so as to reduce solar insolation and cool Earth, has been suggested as an emergency response to geoengineer the planet in response to global warming. While volcanic eruptions have been suggested as innocuous examples of stratospheric aerosols cooling the planet, the volcano analog actually argues against geoengineering because of ozone depletion and regional hydrologic and temperature responses. To further investigate the climate response, here we simulate the climate response to both tropical and Arctic stratospheric injection of sulfate aerosol precursors using a comprehensive atmosphere-ocean general circulation model, the National Aeronautics and Space Administration Goddard Institute for Space Studies ModelE. We inject SO2 and the model converts it to sulfate aerosols, transports the aerosols and removes them through dry and wet deposition, and calculates the climate response to the radiative forcing from the aerosols. We conduct simulations of future climate with the Intergovernmental Panel on Climate Change A1B business-as-usual scenario both with and without geoengineering and compare the results. We find that if there were a way to continuously inject SO2 into the lower stratosphere, it would produce global cooling. Tropical SO2 injection would produce sustained cooling over most of the world, with more cooling over continents. Arctic SO2 injection would not just cool the Arctic. Both tropical and Arctic SO2 injection would disrupt the Asian and African summer monsoons, reducing precipitation to the food supply for billions of people. These regional climate anomalies are but one of many reasons that argue against the implementation of this kind of geoengineering.

Journal ArticleDOI
TL;DR: In this paper, a Lagrangian diagnostic for identifying the sources of water vapor for precipitation over the Greenland ice sheet for 30 selected months with pronounced positive, negative and neutral North Atlantic Oscillation (NAO) index, using the European Centre for Medium-Range Weather Forecasts' ERA-40 reanalysis data.
Abstract: [1] We present a new Lagrangian diagnostic for identifying the sources of water vapor for precipitation. Unlike previous studies, the method allows for a quantitative demarcation of evaporative moisture sources. This is achieved by taking into account the temporal sequence of evaporation into and precipitation from an air parcel during transport, as well as information on its proximity to the boundary layer. The moisture source region diagnostic was applied to trace the origin of water vapor for winter precipitation over the Greenland ice sheet for 30 selected months with pronounced positive, negative, and neutral North Atlantic Oscillation (NAO) index, using the European Centre for Medium-Range Weather Forecasts' ERA-40 reanalysis data. The North Atlantic and the Nordic seas proved to be the by far dominant moisture sources for Greenland. The location of the identified moisture sources in the North Atlantic basin strongly varied with the NAO phase. More specifically, the method diagnosed a shift from sources north of Iceland during NAO positive months to a maximum in the southeastern North Atlantic for NAO negative months, qualitatively consistent with changes in the concurrent large-scale mean flow. More long-range moisture transport was identified during the NAO negative phase, leading to the advection of moisture from more southerly locations. Different regions of the Greenland ice sheet experience differing changes in the average moisture source locations; variability was largest in the north and west of Greenland. The strong moisture source variability for Greenland winter precipitation with the NAO found here can have a large impact on the stable isotope composition of Greenland precipitation and hence can be important for the interpretation of stable isotope data from ice cores. In a companion paper, the implications of the present results are further explored in that respect.