scispace - formally typeset
Search or ask a question

Showing papers by "Arkadi Rosenfeld published in 2014"


Journal ArticleDOI
TL;DR: In this paper, laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm).
Abstract: Laser-induced periodic surface structures (LIPSS, ripples) were generated on stainless steel (100Cr6) and titanium alloy (Ti6Al4V) surfaces upon irradiation with multiple femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas (5 × 5 mm2) covered homogeneously by the nanostructures. The irradiated surface regions were subjected to white light interference microscopy and scanning electron microscopy revealing spatial periods around 600 nm. The tribological performance of the nanostructured surface was characterized by reciprocal sliding against a ball of hardened steel in paraffin oil and in commercial engine oil as lubricants, followed by subsequent inspection of the wear tracks. For specific conditions, on the titanium alloy a significant reduction of the friction coefficient by a factor of more than two was observed on the laser-irradiated (LIPSS-covered) surface when compared to the non-irradiated one, indicating the potential benefit of laser surface structuring for tribological applications.

166 citations


Journal ArticleDOI
TL;DR: In this paper, the formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple linearly polarized Ti:sapphire femtosecond laser pulses was studied experimentally in air and water environment.
Abstract: The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon by multiple (N = 100) linearly polarized Ti:sapphire femtosecond laser pulses (duration τ = 30 fs, center wavelength λ0 ∼ 790 nm) is studied experimentally in air and water environment. The LIPSS surface morphologies are characterized by scanning electron microscopy and their spatial periods are quantified by two-dimensional Fourier analyses. It is demonstrated that the irradiation environment significantly influences the periodicity of the LIPSS. In air, so-called low-spatial frequency LIPSS (LSFL) were found with periods somewhat smaller than the laser wavelength (ΛLSFL ∼ 0.7 × λ0) and an orientation perpendicular to the laser polarization. In contrast, for laser processing in water a reduced ablation threshold and LIPSS with approximately five times smaller periods ΛLIPSS ∼ 0.15 × λ0 were observed in the same direction as in air. The results are discussed within the frame of recent LIPSS theories and compleme...

99 citations


Journal ArticleDOI
TL;DR: In this paper, the formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) was studied numerically using a rate equation system along with a two-temperature model accounting for one and two-photon absorption and subsequent carrier diffusion and Auger recombination processes.
Abstract: The formation of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of silicon with multiple irradiation sequences consisting of femtosecond laser pulse pairs (pulse duration 150 fs, central wavelength 800 nm) is studied numerically using a rate equation system along with a two-temperature model accounting for one- and two-photon absorption and subsequent carrier diffusion and Auger recombination processes. The temporal delay between the individual equal-energy fs-laser pulses was varied between 0 and ∼4 ps for quantification of the transient carrier densities in the conduction band of the laser-excited silicon. The results of the numerical analysis reveal the importance of carrier generation and relaxation processes in fs-LIPSS formation on silicon and quantitatively explain the two time constants of the delay-dependent decrease of the low spatial frequency LIPSS (LSFL) area observed experimentally. The role of carrier generation, diffusion and recombination is quantified individually.

66 citations


Proceedings ArticleDOI
TL;DR: In this paper, spatial light interference microscopy (SLIM) is used to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33).
Abstract: Over the past years, many applications based on laser-induced refractive index changes in the volume of transparent materials have been demonstrated. Ultrashort pulse lasers offer the possibility to process bulky transparent materials in three dimensions, suggesting that direct laser writing will play a decisive role in the development of integrated micro-optics. At the present time, applications such as 3D long term data storage or embedded laser marking are already into the phase of industrial development. However, a quantitative estimate of the laser-induced refractive index change is still very challenging to obtain. On another hand, several microscopy techniques have been recently developed to characterize bulk refractive index changes in-situ. They have been mostly applied to biological purposes. Among those, spatial light interference microscopy (SLIM), offers a very good robustness with minimal post acquisition data processing. In this paper, we report on using SLIM to measure fs-laser induced refractive index changes in different common glassy materials, such as fused silica and borofloat glass (B33). The advantages of SLIM over classical phase-contrast microscopy are discussed.

4 citations


01 Jan 2014
TL;DR: In this paper, a self-learning adaptive loop based on temporal shaping of the ultrafast laser pulses is proposed to control laser-induced phenomena for practical applications, including the energy flow and material response.
Abstract: Ultrafast lasers promise to become attractive and reliable t ools for material processing on micro- and nanoscale. The additional possibility to temporally tailor ultrashort laser pu lses by Fourier synthesis of spectral components enables extended opportunities for optimal processing of materials. An experimental demonstration of the technique showing the possibility to design particular excitation sequences tailored with respect to the individual material response will be described, laying the groundwork for adaptive optimization in materials structuri ng. We report recent results related to the implementation of self-learning, adaptive loops based on temporal shaping of the ultrafast laser pulses to control laser-induced phenomena for practical applications. Besides the fundamental interest, it is shown that under particular excitation conditions involving modulated excitation, the energy flow can be controlled and the material response can be guided to improve processing results. Examples are given illuminating the possibility to control and manipulate the kinetic properties of ions emitted from laser irradiated se miconductor samples using excitation sequences synchronized with the phase transformation characteristic times.

3 citations