scispace - formally typeset
Search or ask a question

Showing papers by "Aurelio Cappozzo published in 2016"


Journal ArticleDOI
21 Mar 2016-PLOS ONE
TL;DR: The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.
Abstract: Upper body movements during walking provide information about balance control and gait stability. Typically developing (TD) children normally present a progressive decrease of accelerations from the pelvis to the head, whereas children with cerebral palsy (CP) exhibit a general increase of upper body accelerations. However, the literature describing how they are transmitted from the pelvis to the head is lacking. This study proposes a multilevel motion sensor approach to characterize upper body accelerations and how they propagate from pelvis to head in children with CP, comparing with their TD peers. Two age- and gender-matched groups of 20 children performed a 10m walking test at self-selected speed while wearing three magneto-inertial sensors located at pelvis, sternum, and head levels. The root mean square value of the accelerations at each level was computed in a local anatomical frame and its variation from lower to upper levels was described using attenuation coefficients. Between-group differences were assessed performing an ANCOVA, while the mutual dependence between acceleration components and the relationship between biomechanical parameters and typical clinical scores were investigated using Regression Analysis and Spearman's Correlation, respectively (α = 0.05). New insights were obtained on how the CP group managed the transmission of accelerations through the upper body. Despite a significant reduction of the acceleration from pelvis to sternum, children with CP do not compensate for large accelerations, which are greater than in TD children. Furthermore, those with CP showed negative sternum-to-head attenuations, in agreement with the documented rigidity of the head-trunk system observed in this population. In addition, the estimated parameters proved to correlate with the scores used in daily clinical practice. The proposed multilevel approach was fruitful in highlighting CP-TD gait differences, supported the in-field quantitative gait assessment in children with CP and might prove beneficial to designing innovative intervention protocols based on pelvis stabilization.

29 citations


Journal ArticleDOI
26 Jan 2016-Sensors
TL;DR: A benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor’s uncertainties influence the accuracy of the final result.
Abstract: Information from complementary and redundant sensors are often combined within sensor fusion algorithms to obtain a single accurate observation of the system at hand. However, measurements from each sensor are characterized by uncertainties. When multiple data are fused, it is often unclear how all these uncertainties interact and influence the overall performance of the sensor fusion algorithm. To address this issue, a benchmarking procedure is presented, where simulated and real data are combined in different scenarios in order to quantify how each sensor's uncertainties influence the accuracy of the final result. The proposed procedure was applied to the estimation of the pelvis orientation using a waist-worn magnetic-inertial measurement unit. Ground-truth data were obtained from a stereophotogrammetric system and used to obtain simulated data. Two Kalman-based sensor fusion algorithms were submitted to the proposed benchmarking procedure. For the considered application, gyroscope uncertainties proved to be the main error source in orientation estimation accuracy for both tested algorithms. Moreover, although different performances were obtained using simulated data, these differences became negligible when real data were considered. The outcome of this evaluation may be useful both to improve the design of new sensor fusion methods and to drive the algorithm tuning process.

26 citations


Journal ArticleDOI
17 Jun 2016-PLOS ONE
TL;DR: The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO, and proposed a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix.
Abstract: The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO.

22 citations


Journal ArticleDOI
TL;DR: In this article, the femur, tibia and fibula were used as bone templates to estimate the positions of the centroids of the origins and insertions of cruciate and collateral ligaments, along with their dispersion related to inter-individual variability.

8 citations


Journal ArticleDOI
TL;DR: The method used in this study may be a viable alternative to characterize the tibiofemoral load-dependent behavior in several applications.
Abstract: Several approaches have been used to devise a model of the human tibiofemoral joint for embedment in lower limb musculoskeletal models. However, no study has considered the use of cadaveric 6 × 6 compliance (or stiffness) matrices to model the tibiofemoral joint under normal or pathological conditions. The aim of this paper is to present a method to determine the compliance matrix of an ex vivo tibiofemoral joint for any given equilibrium pose. Experiments were carried out on a single ex vivo knee, first intact and, then, with the anterior cruciate ligament (ACL) transected. Controlled linear and angular displacements were imposed in single degree-of-freedom (DoF) tests to the specimen, and the resulting forces and moments were measured using an instrumented robotic arm. This was done starting from seven equilibrium poses characterized by the following flexion angles: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. A compliance matrix for each of the selected equilibrium poses and for both the intact and ACL-deficient specimen was calculated. The matrix, embedding the experimental load-displacement relationship of the examined DoFs, was calculated using a linear least squares inversion based on a QR decomposition, assuming symmetric and positive-defined matrices. Single compliance matrix terms were in agreement with the literature. Results showed an overall increase of the compliance matrix terms due to the ACL transection (2.6 ratio for rotational terms at full extension) confirming its role in the joint stabilization. Validation experiments were carried out by performing a Lachman test (the tibia is pulled forward) under load control on both the intact and ACL-deficient knee and assessing the difference (error) between measured linear and angular displacements and those estimated using the appropriate compliance matrix. This error increased nonlinearly with respect to the values of the load. In particular, when an incremental posterior-anterior force up to 6 N was applied to the tibia of the intact specimen, the errors on the estimated linear and angular displacements were up to 0.6 mm and 1.5 deg, while for a force up to 18 N, the errors were 1.5 mm and 10.5 deg, respectively. In conclusion, the method used in this study may be a viable alternative to characterize the tibiofemoral load-dependent behavior in several applications.

5 citations