scispace - formally typeset
Search or ask a question

Showing papers by "B. Uma Shankar published in 2018"


Posted ContentDOI
Spyridon Bakas1, Mauricio Reyes, Andras Jakab2, Stefan Bauer3  +435 moreInstitutions (111)
TL;DR: This study assesses the state-of-the-art machine learning methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018, and investigates the challenge of identifying the best ML algorithms for each of these tasks.
Abstract: Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumoris a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses thestate-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross tota lresection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.

1,165 citations


Journal ArticleDOI
TL;DR: The results demonstrate that the segmentation generated by the proposed algorithm can be used for accurate, stable contouring, for both high- and low-grade tumors, as compared to several related state-of-the-art methods involving semi-automatic and supervised learning.

35 citations


Book ChapterDOI
16 Sep 2018
TL;DR: A new deep learning method is introduced for the automatic delineation/segmentation of brain tumors from multi-sequence MR images and novel concepts such as spatial-pooling and unpooling are introduced to preserve the spatial locations of the edge pixels for reducing segmentation error around the boundaries.
Abstract: A new deep learning method is introduced for the automatic delineation/segmentation of brain tumors from multi-sequence MR images. A Radiomic model for predicting the Overall Survival (OS) is designed, based on the features extracted from the segmented Volume of Interest (VOI). An encoder-decoder type ConvNet model is designed for pixel-wise segmentation of the tumor along three anatomical planes (axial, sagittal and coronal) at the slice level. These are then combined, using a consensus fusion strategy, to produce the final volumetric segmentation of the tumor and its sub-regions. Novel concepts such as spatial-pooling and unpooling are introduced to preserve the spatial locations of the edge pixels for reducing segmentation error around the boundaries. We also incorporate shortcut connections to copy and concatenate the receptive fields from the encoder to the decoder part, for helping the decoder network localize and recover the object details more effectively. These connections allow the network to simultaneously incorporate high-level features along with pixel-level details. A new aggregated loss function helps in effectively handling data imbalance. The integrated segmentation and OS prediction system is trained and validated on the BraTS 2018 dataset.

32 citations


Journal ArticleDOI
TL;DR: A novel soft-computing approach is proposed for the segmentation of iris based on rough entropy, with localization using circular sector analysis (CSA) and is found to perform more efficiently and accurately in comparison to the state-of-the-art methodologies.

27 citations


Posted Content
TL;DR: Experimental results demonstrate that the proposed CADe system, when used as a preliminary step before segmentation, can allow improved delineation of tumor region while reducing false positives arising in normal areas of the brain.
Abstract: Inspired by the success of Convolutional Neural Networks (CNN), we develop a novel Computer Aided Detection (CADe) system using CNN for Glioblastoma Multiforme (GBM) detection and segmentation from multi channel MRI data. A two-stage approach first identifies the presence of GBM. This is followed by a GBM localization in each "abnormal" MR slice. As part of the CADe system, two CNN architectures viz. Classification CNN (C-CNN) and Detection CNN (D-CNN) are employed. The CADe system considers MRI data consisting of four sequences ($T_1$, $T_{1c},$ $T_2$, and $T_{2FLAIR}$) as input, and automatically generates the bounding boxes encompassing the tumor regions in each slice which is deemed abnormal. Experimental results demonstrate that the proposed CADe system, when used as a preliminary step before segmentation, can allow improved delineation of tumor region while reducing false positives arising in normal areas of the brain. The GrowCut method, employed for tumor segmentation, typically requires a foreground and background seed region for initialization. Here the algorithm is initialized with seeds automatically generated from the output of the proposed CADe system, thereby resulting in improved performance as compared to that using random seeds.

9 citations