Author
Bimlesh Lochab
Other affiliations: Indian Institutes of Technology, Indian Institute of Technology Delhi, University of Oxford
Bio: Bimlesh Lochab is an academic researcher from Shiv Nadar University. The author has contributed to research in topics: Cardanol & Monomer. The author has an hindex of 21, co-authored 52 publications receiving 1412 citations. Previous affiliations of Bimlesh Lochab include Indian Institutes of Technology & Indian Institute of Technology Delhi.
Topics: Cardanol, Monomer, Curing (chemistry), Polymerization, Polymer
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, a review article is designed to acknowledge efforts of researchers towards the 3C motto, not only trying to create but also adapting the principles to conserve and care for a sustainable environment.
Abstract: Exploration of sustainable alternatives to chemicals derived from petro-based industries is the current challenge for maintaining the balance between the needs of a changing world while preserving nature. The major source for sustainable chemicals is either the natural existing plant sources or waste generated from agro-based industries. The utility of such resources will supplement new processed materials with different sets of properties and environmental friendliness due to their biodegradability and low toxicity during preparation, usage and disposal. Amongst other polymers used on a day-to-day basis, phenolic resins account for vast usage. Replacement of petro-based monomers such as phenol and its derivatives either partly or completely utilized for the synthesis of such resins is ongoing. Extraction of natural phenolic components from cashew nut shell liquid, lignin, tannin, palm oil, coconut shell tar or from agricultural and industrial waste, and their utilization as synthons for the preparation of bio-based polymers and properties obtained are reviewed in this paper. This review article is designed to acknowledge efforts of researchers towards the “3C” motto – not only trying to create but also adapting the principles to conserve and care for a sustainable environment. This review paper describes how extraction, separation and recovery of desired phenolic compounds have occurred recently; how substituted phenol compounds, unmodified and modified, act as monomers for polymerization; and how the presence of sustainable phenolic material affects the properties of polymers. There are about 600 references cited and still there is a lot to uncover in this research area.
173 citations
[...]
TL;DR: In this paper, a novel benzoxazine monomer (Bz-C) based on agrochemical renewable resource, cardanol (byproduct of cashew nut tree, Anacardium occidentale) was synthesized.
Abstract: A novel benzoxazine monomer (Bz-C) based on agrochemical renewable resource—cardanol (by-product of cashew nut tree, Anacardium occidentale) was synthesized. Bz-C, a liquid monomer, was used as reactive diluent for the solventless synthesis of bisphenol-A benzoxazine monomer (Bz-A). Benzoxazine monomer based on cardanol and bisphenol-A in 3:1, 1:1 and 1:3 blend ratio were prepared by this method. The resins had Brookfield viscosity at 316 K in the range of 145–81,533 mPa s. The resins were characterized by 1H-NMR, FTIR and elemental analysis. Curing characteristics were studied by DSC analysis. Thermal stability of cured resins was found to improve with increase in Bz-C content in the blends.
109 citations
[...]
TL;DR: High-energy solid rocket propellants are composite materials having a binder [hydroxy terminated polybutadiene (HTPB), high-energy additives [e.g., ammonium perchlorate (AP)], and pyrolants (metal... as discussed by the authors.
Abstract: High-energy solid rocket propellants are composite materials having a binder [hydroxy terminated polybutadiene (HTPB)], high-energy additives [e.g., ammonium perchlorate (AP)], and pyrolants (metal...
97 citations
[...]
TL;DR: In this paper, a sustainable origin phenol was utilized as a reactive diluent to mediate solventless Mannich-type condensation reaction with para-formaldehyde and primary aromatic amines to form a homologous series of benzoxazine (Bz) monomers namely C-a, C-ddm, c-trisapm and C-tetraapm which differ in their degree of oxazine functionality as mono-, di-, tri- and tetra-oxazine respectively.
Abstract: Cardanol, a sustainable origin phenol, was utilized as a reactive diluent to mediate solventless Mannich-type condensation reaction with para-formaldehyde and primary aromatic amines to form a homologous series of benzoxazine (Bz) monomers namely C-a, C-ddm, C-trisapm and C-tetraapm which differ in their degree of oxazine functionality as mono-, di-, tri- and tetra-oxazine respectively. A strong correlation is reflected between the number of oxazine rings in the monomer and the polymerization behavior, thermo-mechanical transitions, and properties of the polybenzoxazine synthesized. The monomer structure was confirmed by FTIR, 1H-, 13C-NMR spectroscopy and mass spectrometry. The curing, rheological, thermo-mechanical and thermal properties were determined using DSC, FTIR, rheometer, DMTA, LSS and TGA studies. The curing characteristic due to ROP of Bz monomers was supported both by DSC and FTIR studies. The presence of neighboring oxazine group in monomers (C-a to C-tetraapm) strongly attenuates the curing temperature (Ti = 225–140 °C), enhances Tg, thermal stability, and mechanical properties. Interestingly, DFT calculations also supported the lowest curing temperature for highest oxazine functionality monomer (C-tetraapm). The interplay between the degree of oxazine functionality in the monomer; extent of H-bonding and crosslink density values in sustainable origin synthesized polybenzoxazines is suggested. The thermoset showed an increasing trend (PC-a < PC-ddm < PC-trisapm < PC-tetraapm) in Tg (58–109 °C), thermal stability (355–391 °C), char yield (13–37%), LOI (23–31) and storage modulus (3.6–66.5 MPa) values. The monomers are liquid to semi-viscous paste at room temperature and showed potential for solventless processing in adhesive applications.
79 citations
[...]
TL;DR: In this article, a room-temperature sodium-sulfur battery cathode with reduced graphene oxide (rGO) was proposed to solve the problem of polysulfide shuttling and low electrical conductivity of elemental sulfur.
Abstract: High-energy electrochemical storage containing earth abundant materials could be a choice for future battery development. Recent research reports indicated the possibility of room-temperature sodium-ion–sulfur chemistry for large storage including smart grids. Here, we report a room-temperature sodium–sulfur battery cathode that will address the native downsides of a sodium–sulfur battery, such as polysulfide shuttling and low electrical conductivity of elemental sulfur. In this Letter, we use a sustainable route which ensures a large sulfur confinement (i.e., ∼90 wt %) in the cathode structure. The sulfur-embedded polymer is realized via thermal ring-opening polymerization of benzoxazine in the presence of elemental sulfur (CS90) and later composite with reduced graphene oxide (rGO). The resulting CS90 allows a homogeneous distribution of sulfur due to in situ formation of the polymer backbone and allows maximum utilization of sulfur. This unique electrode structure bestows CS90–rGO with an excellent Cou...
73 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
[...]
TL;DR: This review presents the various methods of the synthesis of polyesters and tailoring the properties by proper control of molecular weight, composition, and architecture so as to meet the stringent requirements of devices in the medical field.
Abstract: Aliphatic polyesters prepared by ring-opening polymerization of lactones are now used worldwide as bioresorbabale devices in surgery (orthopaedic devices, sutures, stents, tissue engineering, and adhesion barriers) and in pharmacology (control drug delivery). This review presents the various methods of the synthesis of polyesters and tailoring the properties by proper control of molecular weight, composition, and architecture so as to meet the stringent requirements of devices in the medical field. The effect of structure on properties and degradation has been discussed. The applications of these polymers in the biomedical field are described in detail.
1,441 citations
[...]
TL;DR: This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients into value-added chemicals and fuel products using ILs as the reaction media.
Abstract: Innovative valorization of naturally abundant and renewable lignocellulosic biomass is of great importance in the pursuit of a sustainable future and biobased economy. Ionic liquids (ILs) as an important kind of green solvents and functional fluids have attracted significant attention for the catalytic transformation of lignocellulosic feedstocks into a diverse range of products. Taking advantage of some unique properties of ILs with different functions, the catalytic transformation processes can be carried out more efficiently and potentially with lower environmental impacts. Also, a new product portfolio may be derived from catalytic systems with ILs as media. This review focuses on the catalytic chemical conversion of lignocellulose and its primary ingredients (i.e., cellulose, hemicellulose, and lignin) into value-added chemicals and fuel products using ILs as the reaction media. An outlook is provided at the end of this review to highlight the challenges and opportunities associated with this interes...
446 citations
[...]
411 citations
[...]
TL;DR: The use of vanillin as a building block for the chemical industry is discussed in this article, where vanillin is one of the only molecular phenolic compounds manufactured on an industrial scale from biomass and has the potential to become a key intermediate for the synthesis of bio-based polymers, for which aromatic monomers are needed to reach good thermo-mechanical properties.
Abstract: The use of vanillin as a building block for the chemical industry is discussed in this article. Vanillin is currently one of the only molecular phenolic compounds manufactured on an industrial scale from biomass. It has thus the potential to become a key-intermediate for the synthesis of bio-based polymers, for which aromatic monomers are needed to reach good thermo-mechanical properties. After a first part dedicated to the current sourcing of vanillin, this article focuses on the alkaline oxidation lignin-to-vanillin process, reporting advantages and limits, discusses the various postdepolymerization methods for product isolation and finally examines the outlook for the wider use of vanillin as a key building block for the chemical industry.
395 citations