scispace - formally typeset
Search or ask a question

Showing papers by "Brian Ruffell published in 2011"


Journal ArticleDOI
TL;DR: Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.
Abstract: Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)–dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor–bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8 + T-cell–dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. Significance: These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8 + T-cell–dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy. Cancer Discovery; 1(1); 54–67. ©2011 AACR . This article is highlighted in the In This Issue feature, p. 4

1,520 citations


Journal ArticleDOI
TL;DR: T tumor enhancement with clinically applicable iron oxide nanoparticles may serve as a new biomarker for long-term prognosis, related treatment decisions, and the evaluation of new immune-targeted therapies.
Abstract: Purpose: The presence of tumor-associated macrophages (TAM) in breast cancer correlates strongly with poor outcome. The purpose of this study was to develop a clinically applicable, noninvasive diagnostic assay for selective targeting and visualization of TAMs in breast cancer, based on magnetic resonanceI and clinically applicable iron oxide nanoparticles. Experimental Design: F4/80-negative mammary carcinoma cells and F4/80-positive TAMs were incubated with iron oxide nanoparticles and were compared with respect to magnetic resonance signal changes and iron uptake. MMTV-PyMT transgenic mice harboring mammary carcinomas underwent nanoparticle-enhanced magnetic resonance imaging (MRI) up to 1 hour and 24 hours after injection. The tumor enhancement on MRIs was correlated with the presence and location of TAMs and nanoparticles by confocal microscopy. Results: In vitro studies revealed that iron oxide nanoparticles are preferentially phagocytosed by TAMs but not by malignant tumor cells. In vivo , all tumors showed an initial contrast agent perfusion on immediate postcontrast MRIs with gradual transendothelial leakage into the tumor interstitium. Twenty-four hours after injection, all tumors showed a persistent signal decline on MRIs. TAM depletion via αCSF1 monoclonal antibodies led to significant inhibition of tumor nanoparticle enhancement. Detection of iron using 3,3′-diaminobenzidine-enhanced Prussian Blue staining, combined with immunodetection of CD68, localized iron oxide nanoparticles to TAMs, showing that the signal effects on delayed MRIs were largely due to TAM-mediated uptake of contrast agent. Conclusion: These data indicate that tumor enhancement with clinically applicable iron oxide nanoparticles may serve as a new biomarker for long-term prognosis, related treatment decisions, and the evaluation of new immune-targeted therapies. Clin Cancer Res; 17(17); 5695–704. ©2011 AACR .

258 citations


Journal ArticleDOI
TL;DR: Inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages.

53 citations


Journal ArticleDOI
TL;DR: Unexpectedly, cancer susceptibility is increased in mice lacking histamine, thus revealing a previously unknown mechanism whereby immature myeloid cells contribute to cancer development.
Abstract: Histamine produced by immature myeloid cells restricts the expression of inflammatory mediators and regulates leukocyte recruitment to sites of tissue stress. Unexpectedly, cancer susceptibility is increased in mice lacking histamine, thus revealing a previously unknown mechanism whereby immature myeloid cells contribute to cancer development (pages 87–95).

17 citations