scispace - formally typeset
Search or ask a question

Showing papers by "Catherine A. Gehring published in 2003"


Journal ArticleDOI
01 Mar 2003-Ecology
TL;DR: It is demonstrated that the extended phenotype can be traced from the individuals possessing the trait, to the community, and to ecosystem processes such as leaf litter decomposition and N mineralization, which provides a genetic framework for community structure and ecosystem processes.
Abstract: We present evidence that the heritable genetic variation within individual species, especially dominant and keystone species, has community and ecosystem conse- quences. These consequences represent extended phenotypes, i.e., the effects of genes at levels higher than the population. Using diverse examples from microbes to vertebrates, we demonstrate that the extended phenotype can be traced from the individuals possessing the trait, to the community, and to ecosystem processes such as leaf litter decomposition and N mineralization. In our development of a community genetics perspective, we focus on intraspecific genetic variation because the extended phenotypes of these genes can be passed from one generation to the next, which provides a mechanism for heritability. In support of this view, common-garden experiments using synthetic crosses of a dominant tree show that their progeny tend to support arthropod communities that resemble those of their parents. We also argue that the combined interactions of extended phenotypes con- tribute to the among-community variance in the traits of individuals within communities. The genetic factors underlying this among-community variance in trait expression, partic- ularly those involving genetic interactions among species, constitute community heritability. These findings have diverse implications. (1) They provide a genetic framework for un- derstanding community structure and ecosystem processes. The effects of extended phe- notypes at these higher levels need not be diffuse; they may be direct or may act in relatively few steps, which enhances our ability to detect and predict their effects. (2) From a con- servation perspective, we introduce the concept of the minimum viable interacting popu- lation (MVIP), which represents the size of a population needed to maintain genetic diversity at levels required by other interacting species in the community. (3) Genotype 3 environ- ment interactions in dominant and keystone species can shift extended phenotypes to have unexpected consequences at community and ecosystem levels, an issue that is especially important as it relates to global change. (4) Documenting community heritability justifies a community genetics perspective and is an essential first step in demonstrating community evolution. (5) Community genetics requires and promotes an integrative approach, from genes to ecosystems, that is necessary for the marriage of ecology and genetics. Few studies span from genes to ecosystems, but such integration is probably essential for understanding the natural world.

640 citations


Journal ArticleDOI
TL;DR: Two lines of evidence are consistent with the hypothesis that arbuscular mycorrhizal fungal (AMF) species composition affected P. pratensis: a divergence in AMF spore communities in the two field soils, and little evidence of pathogenic fungi.
Abstract: The effect of the community composition of soil microbes on ecosystem processes has received relatively little attention. Here we examined the variation in soil microbial composition in a Yellowstone National Park grassland and the effect of that variation on the growth, in a greenhouse, of the dominant grass in the community. Plants and their rhizospheric soil were collected from paired, Poa pratensis-dominated grassland plots located inside and outside a 40-year-old exclosure. P. pratensis aboveground, belowground, and whole plant growth were greater in pots with soil communities from grazed grassland compared to fenced grassland, indicating (1) soil microbial communities differed, and (2) this difference influenced the growth of the plant that dominated both grasslands. Treating pots with fungicide (benomyl) suppressed the soil community influence, indicating that different fungal communities caused the soil microbe effect. In addition, two lines of evidence are consistent with the hypothesis that arbuscular mycorrhizal fungal (AMF) species composition affected P. pratensis: (1) a divergence in AMF spore communities in the two field soils, and (2) little evidence of pathogenic fungi. These findings emphasize the need to examine the role that the composition of the soil microbial community plays in controlling terrestrial ecosystems.

73 citations


Journal ArticleDOI
TL;DR: It is suggested that rain forest seedlings are highly variable in their growth responses to AM colonization and that some of this variability is related to the light intensity of the environment.
Abstract: Light intensity and root colonization by arbuscular mycorrhizal (AM) fungi are considered important factors affecting the performance of rain forest plants, yet few studies have examined how these two factors interact. Whether AM colonization promoted growth or caused shifts in biomass allocation in seedlings of four species of Australian rain forest tree (Flindersia brayleana, Acmena resa, Cryptocarya mackinnoniana and Cryptocarya angulata), grown in a glasshouse under light conditions that mimicked the shaded understory (3% PAR) and small light gaps (10% PAR), was examined. Seedlings were grown in sterilized field soil and either inoculated with AM fungi or provided sterile inoculum. Four major findings emerged. First, in all species, seedlings grown in small gap light intensities were larger than seedlings grown in understory light intensities. Second, when seedling biomass was included as a covariate, variation in light intensity was associated with significant shifts in biomass allocation. In all species, leaf area ratio was lower at 10% PAR than at 3% PAR, while root-to-shoot ratio showed the opposite pattern in one of the four species (C. mackinonniana). Third, although percentage root length colonized by AM fungi was greater at 10% PAR than 3% PAR in all species, this difference could be accounted for by variation in seedling size in all species except C. angulata. Fourth, growth and biomass allocation responses to AM colonization varied with light intensity and plant species. AM colonization promoted growth in both light regimes only in F. brayleana, while it had no effect on growth in C. mackinnoniana and C. angulata in either light regime and promoted growth only under high light in A. resa. AM colonization had no effect on leaf area ratio or root-to-shoot ratio in any of the species, and significantly altered specific root length in only one of the four species (C. mackinnoniana). These findings suggest that rain forest seedlings are highly variable in their growth responses to AM colonization and that some of this variability is related to the light intensity of the environment. Given that seedlings may spend many years in the shaded understory, these differences among species could have important effects on long-term seedling performance and seedling community dynamics.

71 citations


Journal ArticleDOI
TL;DR: Four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.
Abstract: In terrestrial ecosystems, changes in environmental conditions that affect plant performance cause a cascade of effects through many trophic levels. In a 2-year field study, seasonal abundance measurements were conducted for fast-growing bacterial heterotrophs, humate-degrading actinomycetes, fungal heterotrophs, and fluorescent pseudomonads that represent the decomposers in soil. Links between plant health and soil microbiota abundance in pinyon rhizospheres were documented across two soil types: a dry, nutrient-poor volcanic cinder field and a sandy-loam soil. On the stressful cinder fields, we identified relationships between soil decomposer abundance, pinyon age, and stress due to insect herbivory. Across seasonal variation, consistent differences in microbial decomposer abundance were identified between the cinders and sandy-loam soil. Abundance of bacterial heterotrophs and humate-degrading actinomycetes was affected by both soil nutritional status and the pinyon rhizosphere. In contrast, abundance of the fungal heterotrophs and fluorescent pseudomonads was affected primarily by the pinyon rhizosphere. On the cinder field, the three bacterial groups were more abundant on 150-year-old trees than on 60-year-old trees, whereas fungal heterotrophs were unaffected by tree age. Fungal heterotrophs and actinomycetes were more abundant on insect-resistant trees than on susceptible trees, but the opposite was true for the fluorescent pseudomonads. Although all four groups were present in all the environments, the four microbial groups were affected differently by the pinyon rhizosphere, by tree age, and by tree stress caused by the cinder soil and insect herbivory.

32 citations