scispace - formally typeset
Search or ask a question

Showing papers by "Celeste C. Linde published in 2016"


Journal ArticleDOI
TL;DR: Significant differences in defence pathway-related gene expression were observed among chickpea cultivars following A. rabieiinfection, indicating potential use for discrimination and selection of resistance “type” in future breeding pursuits.
Abstract: Significant differences in defence pathway-related gene expression were observed among chickpea cultivars following A. rabiei infection. Differential gene expression is indicative of diverse resistances, a theoretical tool for selective breeding. A high number of Ascochyta rabiei pathotypes infecting chickpea in Australia has severely hampered efforts towards breeding for sustained quantitative resistance in chickpea. Breeding for sustained resistance will be aided by detailed knowledge of defence responses to isolates with different aggressiveness. As an initial step, the conserved and differential expressions of a suit of previously characterised genes known to be involved in fungal defence mechanisms were assessed among resistant and susceptible host genotypes following inoculation with high or low aggressive A. rabiei isolates. Using quantitative Real-Time PCR (qRT-PCR), 15 defence-related genes, normalised with two reference genes, were temporally differentially expressed (P < 0.005) as early as 2 h post inoculation of Genesis090 (resistant) or Kaniva (susceptible). The highly aggressive isolate, 09KAL09, induced vastly different expression profiles of eight key defence-related genes among resistant and susceptible genotypes. Six of these same genes were differentially expressed among ten host genotypes, inclusive of the best resistance sources within the Australian chickpea breeding program, indicating potential use for discrimination and selection of resistance “type” in future breeding pursuits.

24 citations


Journal ArticleDOI
TL;DR: Assessment of the diversity of a fungal pathogen, Rhynchosporium commune, on weedy barley grass and cultivated barley using microsatellites, effector locus nip1 diversity and pathogen aggressiveness indicated that pathogen census population size is a better predictor for neutral genetic diversity than host diversity.
Abstract: The outcome of the arms race between hosts and pathogens depends heavily on the interactions between their genetic diversity, population size and transmission ability. Theory predicts that genetically diverse hosts will select for higher virulence and more diverse pathogens than hosts with low genetic diversity. Cultivated hosts typically have lower genetic diversity and thus small effective population sizes, but can potentially harbour large pathogen population sizes. On the other hand, hosts, such as weeds, which are genetically more diverse and thus have larger effective population sizes, usually harbour smaller pathogen population sizes. Large pathogen population sizes may lead to more opportunities for mutation and hence more diverse pathogens. Here we test the predictions that pathogen neutral genetic diversity will increase with large pathogen population sizes and host diversity, whereas diversity under selection will increase with host diversity. We assessed and compared the diversity of a fungal pathogen, Rhynchosporium commune, on weedy barley grass (which have a large effective population size) and cultivated barley (low genetic diversity) using microsatellites, effector locus nip1 diversity and pathogen aggressiveness in order to assess the importance of weeds in the evolution of the neutral and selected diversity of pathogens. The findings indicated that the large barley acreage and low host diversity maintains higher pathogen neutral genetic diversity and lower linkage disequilibrium, while the weed maintains more pathotypes and higher virulence diversity at nip1. Strong evidence for more pathogen migration from barley grass to barley suggests transmission of virulence from barley grass to barley is common. Pathogen census population size is a better predictor for neutral genetic diversity than host diversity. Despite maintaining a smaller pathogen census population size, barley grass acts as an important ancillary host to R. commune, harbouring highly virulent pathogen types capable of transmission to barley. Management of disease on crops must therefore include management of weedy ancillary hosts, which may harbour disproportionate supplies of virulent pathogen strains.

20 citations