scispace - formally typeset
Search or ask a question

Showing papers by "Christian Wirth published in 2007"


Journal ArticleDOI
TL;DR: In this article, the authors used the process-based terrestrial ecosystem model to simulate fire emissions and changes in carbon storage in northern high latitudes from the start of spatially explicit historically recorded fire records in the twentieth century through 2002.
Abstract: [1] Wildfire is a common occurrence in ecosystems of northern high latitudes, and changes in the fire regime of this region have consequences for carbon feedbacks to the climate system. To improve our understanding of how wildfire influences carbon dynamics of this region, we used the process-based Terrestrial Ecosystem Model to simulate fire emissions and changes in carbon storage north of 45°N from the start of spatially explicit historically recorded fire records in the twentieth century through 2002, and evaluated the role of fire in the carbon dynamics of the region within the context of ecosystem responses to changes in atmospheric CO2 concentration and climate. Our analysis indicates that fire plays an important role in interannual and decadal scale variation of source/sink relationships of northern terrestrial ecosystems and also suggests that atmospheric CO2 may be important to consider in addition to changes in climate and fire disturbance. There are substantial uncertainties in the effects of fire on carbon storage in our simulations. These uncertainties are associated with sparse fire data for northern Eurasia, uncertainty in estimating carbon consumption, and difficulty in verifying assumptions about the representation of fires that occurred prior to the start of the historical fire record. To improve the ability to better predict how fire will influence carbon storage of this region in the future, new analyses of the retrospective role of fire in the carbon dynamics of northern high latitudes should address these uncertainties.

179 citations


Book ChapterDOI
05 Apr 2007
TL;DR: McGuire et al. as mentioned in this paper summarized the results of ecological research along these transects that have contributed towards a richer understanding of high latitude terrestrial responses to global changes.
Abstract: Terrestrial ecosystems of high latitudes occupy approximately one-fourth of the Earth's vegetated surface. Substantial climatic warming has occurred in many high latitude areas during the latter half of the 20 th Century (Serreze et al. 2000), and evidence continues to mount that this warming has been affecting the structure and function of terrestrial ecosystems in this region (Stow et al. 2004; Hinzman et al. 2005). It is important to understand these changes because they may have consequences for the functioning of the climate system, particularly in the way that (a) radiatively active gases are exchanged with the atmosphere, (b) water and energy are exchanged with the atmosphere, and (c) fresh water is delivered to the Arctic Ocean (Chapin et al. 2000a; McGuire et al. 2003). The exchange of water and energy has implications for regional climate that may influence global climate, while the exchange of radiatively active gases and the delivery of fresh water to the Arctic Ocean are processes that could directly influence climate at the global scale. Over the past decade the IGBP-GCTE high latitude transects have become important foci for research on responses of high latitude terrestrial regions to global which has been augmented by carbon storage studies along a transect in Finland; one in Canada, the Boreal Forest Transect Case Study (BFTCS); and one in Alaska. The high latitude transects generally span substantial temperature gradients (mean annual temperature of 5° to –15°C) both within and among transects (McGuire et al. 2002). Temperature along each transect co-varies with precipitation and photosynthetically active radiation. Disturbance regimes including fire and insects are also variable among the high latitude transects. For example, fire is essentially non-existent in much of Scandinavia, but burns annually an average of approximately 1% of the boreal forest along the EST (McGuire et al. 2002; Fig. 24.2). Similarly, land-use and land-cover change also varies among the high latitude transects (Kurz and Apps 1999; McGuire et al. 2002, 2004). Each of the transects provides a different perspective into the responses of high latitude ecosystems to global change. In this chapter we first summarize how climate, disturbance regimes, and land cover in high latitudes have changed during the last several decades. We then summarize the results of ecological research along these transects that have contributed towards a richer understanding of high latitude terrestrial responses to these changes. We conclude with a discussion of challenges and opportunities for integration. …

55 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a new data-based prognostic model, for use in dynamic global vegetation models (DGVMs), to estimate monthly burned area from four climate (precipitation, temperature, soil water content and relative humidity) and one human-related (road density) predictors for boreal forest.
Abstract: [1] Boreal regions are an important component of the global carbon cycle because they host large stocks of aboveground and belowground carbon. Since boreal forest evolution is closely related to fire regimes, shifts in climate are likely to induce changes in ecosystems, potentially leading to a large release of carbon and other trace gases to the atmosphere. Prediction of the effect of this potential climate feedback on the Earth system is therefore important and requires the modeling of fire as a climate driven process in dynamic global vegetation models (DGVMs). Here, we develop a new data-based prognostic model, for use in DGVMs, to estimate monthly burned area from four climate (precipitation, temperature, soil water content and relative humidity) and one human-related (road density) predictors for boreal forest. The burned area model is a function of current climatic conditions and is thus responsive to climate change. Model parameters are estimated using a Markov Chain Monte Carlo method applied to on ground observations from the Canadian Large Fire Database. The model is validated against independent observations from three boreal regions: Canada, Alaska and Siberia. Provided realistic climate predictors, the model is able to reproduce the seasonality, intensity and interannual variability of burned area, as well as the location of fire events. In particular, the model simulates well the timing of burning events, with two thirds of the events predicted for the correct month and almost all the rest being predicted 1 month before or after the observed event. The predicted annual burned area is in the range of various current estimates. The estimated annual relative error (standard deviation) is twelve percent in a grid cell, which makes the model suitable to study quantitatively the evolution of burned area with climate.

18 citations