scispace - formally typeset
Search or ask a question

Showing papers by "Cody Messick published in 2018"


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1145 moreInstitutions (8)
TL;DR: In this article, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1, during the first and second observing runs of the Advanced Gravitational-wave detector network.
Abstract: We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the first observing run (O1), from September $12^\mathrm{th}$, 2015 to January $19^\mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^\mathrm{th}$, 2016 to August $25^\mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818 and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between $18.6_{-0.7}^{+3.2}\mathrm{M}_\odot$, and $84.4_{-11.1}^{+15.8} \mathrm{M}_\odot$, and range in distance between $320_{-110}^{+120}$ Mpc and $2840_{-1360}^{+1400}$ Mpc. No neutron star - black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of $110\, -\, 3840$ $\mathrm{Gpc}^{-3}\,\mathrm{y}^{-1}$ for binary neutron stars and $9.7\, -\, 101$ $\mathrm{Gpc}^{-3}\,\mathrm{y}^{-1}$ for binary black holes assuming fixed population distributions, and determine a neutron star - black hole merger rate 90% upper limit of $610$ $\mathrm{Gpc}^{-3}\,\mathrm{y}^{-1}$.

353 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Sheelu Abraham3  +1257 moreInstitutions (142)
TL;DR: The null result constrains the coalescence rate of monochromatic (delta function) distributions of nonspinning in primordial black hole binary formation scenario and strengthens the presently placed bounds from microlensing surveys of massive compact halo objects (MACHOs) provided by the MACHO and EROS Collaborations.
Abstract: We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between 0.2 M⊙–1.0 M⊙. We use the null result to constrain the binary merger rate of (0.2 M⊙, 0.2 M⊙) binaries to be less than 3.7×105 Gpc-3 yr-1 and the binary merger rate of (1.0 M⊙, 1.0 M⊙) binaries to be less than 5.2×103 Gpc-3 yr-1. Subsolar mass ultracompact objects are not expected to form via known stellar evolution channels, though it has been suggested that primordial density fluctuations or particle dark matter with cooling mechanisms and/or nuclear interactions could form black holes with subsolar masses. Assuming a particular primordial black hole (PBH) formation model, we constrain a population of merging 0.2 M⊙ black holes to account for less than 16% of the dark matter density and a population of merging 1.0 M⊙ black holes to account for less than 2% of the dark matter density. We discuss how constraints on the merger rate and dark matter fraction may be extended to arbitrary black hole population models that predict subsolar mass binaries.

116 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott2, Fausto Acernese3  +1220 moreInstitutions (118)
TL;DR: After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, no evidence of gravitational waves of any polarization is found.
Abstract: We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper limits for scalar and vector strains, finding values comparable in magnitude to previously published limits for tensor strain. Our results may be translated into constraints on specific alternative theories of gravity.

89 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe detection methods for extensions of gravitational wave searches to sub-solar mass compact binaries, and demonstrate how to obtain conservative bounds for the upper limit on the dark matter fraction.
Abstract: We describe detection methods for extensions of gravitational wave searches to sub-solar mass compact binaries. Sub-solar mass searches were previously carried out using Initial LIGO, and Advanced LIGO boasts a detection volume approximately 1000 times bigger than Initial LIGO at design sensitivity. Low masses present computational difficulties, and we suggest a way to rein in the increase while retaining a sensitivity much greater than previous searches. Sub-solar mass compact objects are of particular interest because they are not expected to form astrophysically. If detected they could be evidence of primordial black holes (PBH). We consider a particular model of PBH binary formation that would allow LIGO/Virgo to place constraints on this population within the context of dark matter, and we demonstrate how to obtain conservative bounds for the upper limit on the dark matter fraction.

31 citations


Posted Content
TL;DR: In this paper, the aligned-spin template bank of the GstLAL-based inspiral pipeline was used to analyze data from the second observing run of Advanced LIGO and Virgo.
Abstract: We describe the methods used to construct the aligned-spin template bank of gravitational waveforms used by the GstLAL-based inspiral pipeline to analyze data from the second observing run of Advanced LIGO and Virgo. The bank expands upon the parameter space covered during the first observing run, including coverage for merging compact binary systems with total mass between 2 $\mathrm{M}_{\odot}$ and 400 $\mathrm{M}_{\odot}$ and mass ratios between 1 and 97.989. Thus the systems targeted include merging neutron star-neutron star systems, neutron star-black hole binaries, and black hole-black hole binaries expanding into the intermediate-mass range. Component masses less than 2 $\mathrm{M}_{\odot}$ have allowed (anti-)aligned spins between $\pm0.05$ while component masses greater than 2 $\mathrm{M}_{\odot}$ have allowed (anti-)aligned between $\pm0.999$. The bank placement technique combines a stochastic method with a new grid-bank method to better isolate noisy templates, resulting in a total of 677,000 templates.

18 citations


Journal ArticleDOI
TL;DR: In this article, the performance of a zero-latency whitening filter in a detection pipeline for compact binary coalescence (CBC) GW signals was examined and it was shown that the filter reproduces signal-to-noise ratio (SNR) sufficiently consistent with the results of the original highlatency and phase-preserving filter for both noise and artificial GW signals.
Abstract: Joint electromagnetic and gravitational-wave (GW) observation is a major goal of both the GW astronomy and electromagnetic astronomy communities for the coming decade. One way to accomplish this goal is to direct follow-up of GW candidates. Prompt electromagnetic emission may fade quickly, therefore it is desirable to have GW detection happen as quickly as possible. A leading source of latency in GW detection is the whitening of the data. We examine the performance of a zero-latency whitening filter in a detection pipeline for compact binary coalescence (CBC) GW signals. We find that the filter reproduces signal-to-noise ratio (SNR) sufficiently consistent with the results of the original high-latency and phase-preserving filter for both noise and artificial GW signals (called “injections”). Additionally, we demonstrate that these two whitening filters show excellent agreement in χ^2 value, a discriminator for GW signals.

8 citations